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摘要 

隨著網路的盛行，自動斷詞與標記的大規模語料庫逐漸普及。自動化不可避免地引入

一些斷詞與標記的錯誤，並可能對下游任務產生負面影響。搭配詞的自動抽取是一項

受斷詞品質影響的任務。本文探討一些方法試圖減輕斷詞錯誤對漢語搭配詞抽取之影

響。我們嘗試了一個結合多個共現訊息的簡單線性模型，試圖減少抽取出之搭配詞含

有的斷詞錯誤。實驗結果顯示，此模型無法區分搭配詞是否為斷詞錯誤所導致。因此

，我們使用了 FastText 詞向量的訊息進行了另一個案例研究。結果顯示，由斷詞錯誤

所產生的假搭配詞與真正的搭配詞，其之間的語義相似性具有不同的特徵。未來研究

可嘗試在搭配詞抽取中加入詞向量的訊息。 

Abstract  

The prevalence of the web has brought about the construction of many large-scale, 

automatically segmented and tagged corpora, which inevitably introduces errors due to 

automation and are likely to have negative impacts on downstream tasks. Collocation 

extraction from Chinese corpora is one such task that is profoundly influenced by the quality 

of word segmentation. This paper explores methods to mitigate the negative impacts of word 

segmentation errors on collocation extraction in Chinese. In particular, we experimented with 

a simple model that aims to combine several association measures linearly to avoid retrieving 

false collocations resulting from word segmentation errors. The results of the experiment show 

that this simple model could not differentiate between true collocations and false collocations 
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resulting from word segmentation errors. An ad hoc case study incorporating information from 

FastText word vectors is also conducted. The results show that collocates resulting from correct 

and erroneous word segmentation have different profiles in terms of the semantic similarities 

between the collocates. The incorporation of word vector information to differentiate between 

true and false collocations is suggested for future work. 

關鍵詞：搭配詞抽取、中文斷詞、詞向量 

Keywords: Collocation Extraction, Chinese Word Segmentation, Word Vector 

 

1 Introduction 

A collocation, in Firthian sense, is a combination of words that tend to occur near each other 

in natural language [1]. To measure the tendency for words to co-occur, various statistical 

measures are proposed to quantify the association strengths of word pairs. These association 

measures are often used to rank and extract collocations from corpora. As the concept of 

collocation was developed in the western world, which has a writing system that clearly 

delimits word boundaries, the adoption of the concept of collocation in languages where the 

notion of wordhood is not clear necessitates a preprocessing step that segments the text into 

sequences of “words”. Computing association measures based on the segmented text to extract 

collocations thus requires an additional assumption—the word segmentation must return 

correct results. Otherwise, the collocations extracted might be nonsense—instead of being 

recurrent “word” combinations, the “collocations” may in fact be “character” combinations 

that have a tendency to co-occur. 

With the prevalence of the internet, large corpora constructed from texts collected from 

the web has become common. At the same time, manual checking of the automatic 

segmentation and tagging of the corpora to ensure the quality has become nearly impossible, 

as the amount of data collected is enormous. In addition, out-of-vocabulary words such as 

named entities, new terms, and special usage of particular subcultures frequently appear in web 

texts [2], further casting doubt on the performance of automatic segmentation of the 

constructed corpora.  

Since manual checking and corrections are not practical solutions to counter automatic 

preprocessing errors in large corpora, it is crucial to be aware of the negative impacts that such 

errors could have on downstream tasks. For instance, collocations extracted from Chinese 

social media texts may contain several instances of false collocations that resulted from word 
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segmentation errors. Table 1 lists the top 16 collocates of the node word 三 ‘three’ retrieved 

from the social media PTT (see section 2.1 for the data). Strikingly, the top 10 ranked 

collocations in Table 1 all resulted from word segmentation errors. In other words, there are 

only 37.5% of the word pairs in this list that count as “true” collocations. The others are not 

even “word” pairs. 

In this paper, we explore the potential of leveraging existing association measures, 

originally designed to quantify the association strengths between words, to detect or filter out 

false collocations resulting from word segmentation errors in collocation extraction. The 

assumption is that false collocations may behave differently from true collocates in the patterns 

of association measures. In particular, we explore the possibility of constructing a new 

association measure from existing ones that is robust against retrieving false collocations 

resulting from word segmentation errors. 

 

Table 1. Top 16 collocates that have the highest tendency to co-occur (as measured by MI) 

with the node word 三 ‘three’ in PTT corpus. 

Word 1 Word 2 Frequency MI Rank Word 1 Word 2 Frequency MI Rank 

三 池崇史 17 10.062 1 三 丁 219 9.154 9 

 浦友 5 10.062 2  日月 18 9.022 10 

 浦春馬 7 10.062 3  次元 24 7.559 11 

 角頭 20 9.683 4  餐 261 7.457 12 

 人房 8 9.603 5  小 2367 6.585 13 

 人行 52 9.496 6  秒 82 5.655 14 

 倍速 8 9.477 7  年前 95 5.563 15 

 班制 12 9.325 8  年 716 5.377 16 

 

2 Combining Association Measures 

The purpose of this research is to explore the possibility of constructing a robust association 

measure by combining several association measures, with the aim of mitigating the impact of 

retrieving false collocations resulting from word segmentation errors in Chinese. Below, we 

describe the data, the model for combining several association measures, and the training of 

the model. 



 

2.1 Data 

As a preliminary study, we focus here only on association strengths of word pairs occurring in 

a running window of two (i.e., bigrams). The corpus used to calculate various association 

measures was constructed from 36,000 texts from PTT forum1, which is one of the largest 

online forums in Taiwan. The texts were collected from 12 categories (BabyMother, Boy-Girl, 

gay, Gossiping, Hate, HatePolitics, Horror, JapanMovie, joke, LGBT_SEX, NTU, sex)2, with 

3000 texts sampled from each category. The corpus was segmented with Jseg3. Word pair 

frequencies were then calculated from the corpus. 

Eight association measures—MI, MI3, MI.log-f, t, Dice, logDice, 𝚫P1|2, 𝚫P2|1—were 

calculated from the corpus. The first six measures follow the statistics used in the Sketch 

Engine [3], and the last two measures, 𝚫P1|2 and 𝚫P2|1, are directional association measures 

proposed in [4]. The MI measure measures the ratio between the observed frequency (O = fAB) 

and the expected frequency (E = fA·fB/N) of a word pair (wA, wB) on a logarithmic scale. Since 

MI tends to assign low-frequency word pairs (having low value of E) high scores, varients of 

the MI measure are proposed to counter this effect. MI3 achieve this by taking the cube of the 

observed frequency to strengthen its influence relative to the expected frequency, and MI.log-

f counters MI’s low-frequency bias by multiplying the MI score with ln(O + 1). T measures 

the discrepancy between the observed and expected frequency against the square root of  the 

observed frequency. The Dice coefficient compares the cooccurrence frequency of the word 

pair against the summed frequencies of the words in the pair. As proposed in [4], 𝚫P1|2 and 

𝚫P2|1 are different from the other measures in that they are “directional” while others are 

“symmetric”. That is, instead of assigning a single score that indicates the strength of “mutual” 

attraction between a word pair (w1, w2 ), 𝚫P1|2 and 𝚫P2|1 assign two separate scores to a single 

word pair—𝚫P1|2 indicates how predictable w1 is given w2, and 𝚫P2|1 indicates how predictable 

w2 is given w1.  

 

MI = log2(O/E) MI3 =log2(O
3/E) MI.log-f = MI·ln(O + 1) 

 t = (O - E)/O0.5  Dice = 2·fAB/(fA + fB) logDice = 14 + log2(Dice) 

𝚫P2|1 = p(w2 | w1) - p(w2 | not w1)  𝚫P1|2 = p(w1 | w2) - p(w1 | not w2) 

Figure 1. Formula of the association measures used in this study. fA is the frequency of a word 

 
1
 https://www.ptt.cc/bbs 

2
 https://www.ptt.cc/bbs/{category} 

3
 A modified version of Jieba trained with Sinica Corpus. https://github.com/amigcamel/Jseg 
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wA in the corpus; O (or fAB) is the observed frequency of a word pair (wA, wB); E (equals 

fA·fB/N, where N is the corpus size) is the expected frequency of a word pair (wA, wB); p(wA | 

wB) is the probability that wA occurs before wB, and  p(wA | not wB) is the probability that  wA 

occurs before words other than wB. 

 

Due to the limitation of computing power, only word pairs with one of the words being 

a single-character word occurring in the Chinese Lexical Database [5] were calculated for the 

association measures. In addition, word pairs with frequencies below or equal to 3 were 

excluded from the calculation. This resulted in a dataset of 334,686 word pairs with their 

corresponding eight association measures. 

2.2 Model 

As a preliminary investigation, the model used in this study was intended to be simple and 

transparent. The model Mcomb is a simple linear combination of several association measures, 

as shown in equation (1). 

Mcomb = α1⋅M1 + α2⋅M2 + α3⋅M3 + ... + αn⋅Mn                                     (1) 

In equation (1), Mi is the percentile rank of one of the eight association measures mentioned in 

the previous section, and αi is the weight of Mi on the model Mcomb. The weights αi are 

determined by a grid search [9] that finds the best configuration of (α1, α2, ..., αn). 

 The goal of the model is to retrieve a list of collocations that has a low portion of false 

collocations resulting from word segmentation errors. To achieve this, we score the model 

during the grid search as the portion of “correct” collocations in a list of top n collocations 

ranked according to Mcomb. “Correct” collocations are defined as collocations that (1) do not 

result from word segmentation errors, and (2) have ranks below 100 in at least m association 

measures (the parameter “low rank num” in Table 2). Word segmentation errors are defined 

using a dictionary constructed from tokens in ASBC [6], lexical entries in the Chinese 

dictionary compiled by the Ministry of Education4, and Chinese Wikipedia page titles5. A 

word pair is defined as a false collocation if it results from a single lexical entry in the 

dictionary that is split apart due to a word segmentation error. Note that this definition is 

limited in that only a certain kind of word segmentation errors (e.g. “蔡 | 英文”) is captured. 

 
4
 https://github.com/g0v/moedict-data 

5
 https://dumps.wikimedia.org/zhwiki/20200620 
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Other kinds of segmentation errors such as “軍官軍 | 銜”, which segments a string of two 

words (“軍官” and “軍銜”) into two words in a wrong way  (“軍官軍” and “銜”), would not 

be captured by this dictionary checking approach. This restricted definition is a compromise 

since a more precise definition would require costly human annotation of the word pairs. 

2.3 Training 

The dataset described in section 2.1 was split into 80% for training and 20% for testing. The 

training set was used to perform the grid search to find the optimal weight configurations for 

the component association measures. For each iteration (a set of weights αi), an Mcomb score 

can be calculated for each word pair in the training set. The top n collocations were then 

retrieved according to the Mcomb scores, from which a score (the proportion of “correct” 

collocations) could then be assigned to this weight configuration. After the grid search, weight 

configurations with the highest score were then used to retrieve the top n collocations from the 

testing set, from which the model was evaluated. 

 

3 Evaluation 

To see whether combining several association measures in a linear fashion could improve the 

results of collocation extraction, we evaluated the top n collocations retrieved by the model 

against the top n collocations retrieved by each association measure constituting the model. 

Ninety percent of the testing data were sampled and used for the retrieval of the top n 

collocations. For each set of top n collocations retrieved by the model and its component 

association measures, the proportion of “correct” word segmentation was calculated. This 

process was repeated 100 times, and the distribution of the proportion of the “correct” 

collocations for the model and its component association measures were compared. 

Several configurations of the model were tested, most of which show qualitatively 

similar results. In the following sections, we describe two versions of the model—one 

consisting of three component association measures and the other consisting of eight. Table 2 

summarizes the models and their performance. 

3.1 Model 1: Linear Combination of Three Measures 

The first model is a linear combination of three association measures—MI, logDice, and 𝚫P1|2: 

Mcomb = α1⋅Percentile(MI) + α2⋅Percentile(logDice) + α3⋅Percentile(𝚫P1|2)             (2) 



 

3.1.1 Model Parameters 

During training, the weight configurations (α1, α2, α3) were searched over the space: 

{(i, j, k) | ∀i, j, k ∈ S}, where S = {-1, -0.95, -0.9, …, 0.9, 0.95, 1} 

For each weight configuration, 20 collocations with the highest Mcomb scores were retrieved. 

The score of a weight configuration is the proportion of “correct” word segmentation in this 

list of top 20 collocations. 

3.1.2 Comparing with Single Association Measures 

Training with these parameters resulted in eight weight configurations that reached an optimal 

score of 0.7 in the training set. For each of them, the distribution of the proportion of the 

“correct” collocations in the testing set is shown in Figure 2. The optimal Mcomb model on the 

testing set has a mean of 46.7% “correct” collocations. 

 Retrieving the top 20 collocations with the component measures of the Mcomb model, 

on the other hand, yields better results—two of the three measures performed better than 

46.7%, and even the least performant measure (MI) has an average score of 45.9% (Figure 3). 

 

 

Figure 2. The distribution of the proportion of the “correct” collocations retrieved by each of 

the eight optimal Mcomb scores in the testing set. Among these eight optimal weight 

configurations (on training set), the configuration 1.0⋅Percentile(MI) + 



 

0.05⋅Percentile(logDice) + 0.0⋅Percentile(𝚫P1|2) (the subplot in the 3rd row and the 2nd 

column) achieved the best performance (46.7% “correct”) on the testing set. 

 

 

Figure 3. The distribution of the proportion of the “correct” collocations retrieved by each of 

the component association measures of the Mcomb model—MI, 𝚫P1|2, and logDice. The 

component measures, at least for 𝚫P1|2 (the center subplot, 78.4% “correct”) and logDice (the 

rightmost subplot, 53.4% “correct”), performed better individually than combining together 

into Mcomb on the testing set. 

 

3.2 Model 2: Linear Combination of Eight Measures 

The setup of Model 2 is identical to Model 1 except that there are now 8 components in the 

model: 

Mcomb = α1⋅Percentile(MI) + α2⋅Percentile(logDice) + α3⋅Percentile(𝚫P1|2) +                   

               α4⋅Percentile(𝚫P2|1) + α5⋅Percentile(MI3) + α6⋅Percentile(MI.log-f) +  

     α7⋅Percentile(t) + α8⋅Percentile(Dice)                                                          (3) 

Due to the huge search space resulting from the eight weight configurations, instead of a full 

grid search, 1/10,000 of the search space was sampled and searched on. In addition, the space 

of the possible values for αi was set smaller to S = {-1, -0.875, -0.75, …, 0.75, 0.875, 1}. 

 Evaluated using the procedure identical to Model 1, Model 2 showed no qualitatively 

different results. Several configurations of the parameters of Model 2 all resulted in models 

that do not perform better than their component association measures, again, showing that 

combining several association measures in a linear fashion cannot protect the model from 

retrieving false collocations resulting from word segmentation errors. Table 2 summarises 

several parameter settings of Model 1 and Model 2 and the results of the evaluation. 

 

Table 2. Parameter settings and performance of the models in the experiment. For most 



 

models (except 1-3), the performance is worse than at least one of their component measures. 

 Parameters Training Testing (max correct % ) 

Model 

ID 

Component 

Measures 
Top n 

Low rank 

number 
Search space 

Number of optimal 

weight configs 
Model 

Component 

measures 

1-1  MI, 𝚫P2|1, logDice  20 2 {1, -0.95, ..., 0.95, 1}  101  0.557 0.568 

1-2  MI, 𝚫P1|2, logDice  20 2 {1, -0.95, ..., 0.95, 1}  8  0.462 0.794 

1-3  MI, t, logDice  20 2 {1, -0.95, ..., 0.95, 1}  261  0.632 0.555 

1-4  MI, MI3, t  20 2 {1, -0.95, ..., 0.95, 1}  436  0.504 0.554 

2-1  All  10 1 {-1, -0.875, ..., 0.875, 1}  10  0.613 0.796 

2-2  All  20 3 {-1, -0.875, ..., 0.875, 1}  3  0.503 0.793 

2-3  All  20 2 {-1, -0.875, ..., 0.875, 1}  1  0.552 0.787 

2-4  All  10 2 {-1, -0.875, ..., 0.875, 1}  13  0.632 0.797 

 

4 Discussion 

As seen in Table 2, generally, the model performs worse than its component measures. The 

only exception is Model 1-3, which by combining MI, t, and logDice, attained better 

performance than its component measures in 3 of 261 weight configurations. Hence, at least in 

the case of MI, t, and logDice, the combination of association measures may lead to better 

collocation extraction.  

The general failure of the model suggests that if combining association measures could 

indeed capture patterns of word segmentation errors in collocation extraction, combining the 

measures in a linear fashion is too simple to capture these patterns. One direction for future 

research then is to use more complicated models, such as adding interaction terms to the model 

and see whether these more complicated models could capture word segmentation errors in the 

collocations. This approach, however, suffers from the exponential growth of the search space, 

making it computationally expensive or even impossible to find the optimal configurations.  

Another direction of future work is to incorporate information additional to association 

measures into the model. Word vectors are promising candidates for this direction of work, as 

word segmentation errors might result in nonsense “words”, and these nonsense words might 

reveal themselves from the pattern of semantic similarities between normal and nonsense 

words, and between the words in each of these categories. To confirm our intuition, we carried 

out a pilot case study to inspect the semantic similarities among the words in two lists of 

collocations. The word 林 ‘Lin (family name)’ and 三 ‘three’ were used in the two lists 



 

respectively as the node word, and their right collocates were extracted. For each of the two 

lists, collocations were extracted using seven measures (the eight measures except Dice 

mentioned in section 2.1)—20 collocations ranked as highest were retrieved for each measure, 

resulting in a list of 140 collocations (with duplications). Then, collocations that appeared less 

than 3 times were removed from the list (i.e., a collocation needs a rank of at least 20 in at least 

3 measures to retain in the list). We then calculated the semantic similarities (cosine similarity 

of word vectors) between all words with FastText pre-trained word vectors [7]. The results are 

represented as network plots shown in Figure 4 and 5. The node in the network represents a 

word (either a node word or its collocates) in a list of collocations. The thickness of the edge 

between a pair of words indicates the degree of similarity between them, with higher similarity 

represented by a thicker edge. 

One feature that instantly pops out from the figures is that correctly segmented 

collocates (blue nodes) form clusters. That is, these collocates are similar to each other in terms 

of semantic similarities as measured by the cosine similarity of their word vectors. On the other 

hand, collocates resulting from word segmentation errors are much more spread out throughout 

the network. This contrast between correctly and erroneously segmented collocates makes 

sense since word vectors are known to capture the extent to which words are replaceable (i.e., 

second-order, or paradigmatic, similarity) [8]. Thus, the collocates appearing within the same 

paradigm, such as 林{同學/老師/醫生} or 三{次/位/名/天/年/秒/小時}, are expected to have 

high pairwise similarities. Word segmentation errors, on the other hand, distort the well-

formedness of the words, which may result in noisy patterns in similarities between these 

anomalous words, and the patterns are likely to vary case to case for collocations retrieved with 

different node words.  

This simple ad hoc study, which shows that erroneously word segmented collocates 

may have a different profile to correctly segmented collocates, thus hints at a potential direction 

for future research by incorporating word vector information to improve the quality of 

collocation extraction. In addition, this pattern of similarities between collocates, which is 

observed in collocations that are defined with word pairs occurring in a window size of two 

(bigrams), is expected to generalize to collocations defined with word pairs occurring in larger 

window sizes. This is because the pattern observed seems to result from the well-formedness 

of the collocates. As long as word segmentation errors produce nonsense collocates, this 

approach is likely to capture the pattern of semantic similarities between true and false 

collocates. 

https://www.zotero.org/google-docs/?WpLm7e
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Figure 4. Semantic similarities between right collocates of 林 ‘Lin (family name)’. The 

thickness of the edge indicates the degree of similarity between a pair of nodes (edges with 

higher values of similarity are thicker). The orange node indicates the node word. Blue nodes 

indicate words of collocations that are correctly segmented, and red nodes are words resulting 

from word segmentation errors. 

 

 

Figure 5. Semantic similarities between right collocates of 三 ‘three’. See the caption of 

Figure 4 for the meaning of the edges and the node colors. The nodes 浦友, 池崇史, 浦春馬 

are isolated (i.e., similarities with other words cannot be measured) because word vectors of 

these words cannot be constructed due to the absence of necessary subword information in 

FastText pre-trained model. 

 



 

5 Conclusion 

Word segmentation is an important step in the NLP pipeline for Chinese, as the result of word 

segmentation largely influences the downstream tasks in the pipeline, such as PoS tagging, 

NER, and collocation extraction. In addition, with the prevalence of the internet, large corpora 

are constructed from texts collected from the web. With automatic word segmentation and PoS 

tagging performed on such large corpora, it is nearly impossible for manual checking on the 

correctness of such results. Thus, it is crucial to explore ways to mitigate the impacts of 

erroneous results stemming from such automatic tasks on downstream tasks. 

In this paper, we investigated methods for improving the results of collocation 

extraction in automatically word segmented Chinese corpora, which suffers from retrieving 

false collocations resulting from word segmentation errors. A simple model, which combines 

several association measures in a linear fashion, are explored. Experiments with the simple 

linear model show that this model could not capture the necessary patterns to distinguish 

correctly word segmented collocations from erroneously segmented ones, as in most cases, the 

model performed worse than the association measures constituting the model. Facing this null 

result, we explore the potential for word vectors to capture the patterns of word segmentation 

errors in a list of collocations. An ad hoc case study of two lists of collocations shows that, in 

a list of collocations retrieved with a node word, correctly word segmented collocates are much 

more similar to each other in terms of semantic similarities computed from word vectors 

compared to erroneously segmented collocates. In future work, a study that investigates formal 

methods of incorporating word vector information to mitigate impacts of word segmentation 

errors on collocation extraction is suggested. 
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