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摘要 

辨識觀點在「辯論語意挖掘」的領域中扮演著重要的角色。在任意文章中辨識出論點，

不僅可以用在被立場分類做為特徵來源增加辨識的準確性，同時也可以做為一篇文章表

明其支持或反對一個目標的理由。在這項研究中，已經有許多方法嘗試解決這一項任務，

較廣泛提起的是文字分類方法和自動化摘要的技巧。然而，將辨識觀點轉化成文字分類

的問題不僅著重在特徵的選擇和使用，同時也因為將文章中一個一個句子拆出視為獨立

的句子，所以也失去了文章整體的關係；自動化摘要的技巧雖然將文章中的所有句子一

起處理評估出其中一句適合做為文章代表的句子，然而現有的一些方法多使用詞袋模型

以及通用的自動化摘要方法，不僅沒有表示的特徵過於稀疏，同時亦沒有考量及引入辯

論文章的特性。 

本研究主要在可以保留文章為一體的自動化摘要方法上進行深刻的觀察及調整，使其不

僅可以以辯論強度為導向摘要文章，並建構一有向圖來表示這些文章。在這些增強和調

整下，不僅讓原本無辯論導向的自動化摘要方法可以更好的排序出辯論的句子。最終，

本研究提出的方法可以在辯論文章中識別論點句子的任務上提升 8%的辨識準確率。 
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Abstract 

Identifying argument components has become an important area of research in argument 

mining. When argument components are identified, they can not only be used for stance 

classification but also can provide reasons for determining an article is supporting or 

opposing about a specific target. 

Previous research mainly used text classification and summarization techniques to solve this 

task. However, by transforming the task to a classification problem, not only rely heavily on 

choosing and using bag-of-words features, but also lose the article entity information due to 

extract the sentences out of the article and treat as an individual training instance. In the other 

hand, although summarization techniques handle on entire article and try to figure out which 

sentence can best represent the core concept of the article, in identifying argument 

components still heavily relies on bag-of-words feature representation and lack of 

argument-oriented features to concern about argument components characteristics. 

In our study, we dive down to the core of the summarization method, not only makes it based 

on argument strength to summarize articles and identify argument components, but also 

proposed a directed graph construction approach. Experiments show that our proposed 

method outperforms 8% better than those without argument-oriented methods. 

關鍵詞：辯論語意挖掘、辨識論點、自動化摘要、有向圖 

Keywords: Argument Mining, Argument Components, Summarization, Directed Graph. 

 

1. Introduction 

In “Argument Components Extraction (ACE),” researchers try to get which sentence can be 

treated as arguing points, as known as “Argument Components (AC).” According to [1], 

which summarized tons of state-of-art knowledge about AM, summarized that how can a 

sentence become an argument component. The argument components in argumentative 

articles are usually formed by five types of sentences: “Claim” are the sentences that 

represent the statement being argued, “Data” are the facts or evidence used to prove the claim, 

“Warrant” are the sentences that make a connection between data and claim, “Backing” and 

“Rebuttal” are the sentences that support and against the warrant, respectively. 

ACE is what our study is targeting on, to find out which are the key sentences that make 

379



people explain why they support or against something. Furthermore, the results can feedback 

to SC task, since we know the key sentences that lead an article to support or against. 

We are using the dataset released by [2], which collected posts under the domain “Abortion,” 

“Gay Rights,” “Obama” and “Marijuana” from an online debate forum. They manually 

labeled argument components in each post under each domain. 

To accomplish the goal of ACE, previous methods commonly use bag-of-words or 

feature-based approach to represent the sentence in a feature vector form. These methods will 

cause the problems that lead to sparse feature, and it needs to treat sentences individually 

rather than processing with other sentences in the post. 

We based on existed summarization method, TextRank to be one of our baselines. In [3], they 

aim to extract argument components by applying TextRank, which first using TF-IDF to 

represent each sentence then create an undirected graph, then applies PageRank on the 

undirected graph to acquire ranked sentences; In the end, the top-ranked sentence will be 

treated as argument components. However, we can say that the summarization algorithm was 

proved to perform well in extracting keywords or key sentences from an article, but cannot 

confidently say they are argument components. 

In [4], which their work motivated us to integrate argument-oriented information in the graph, 

shows that changing the edge construction method can improve TextRank performance. We 

proposed an argument-oriented TextRank, ArguRank to address previously issued problems: 

With integrating subjectivity score to change the calculation within TextRank, we can 

confidently say that the result will be argument-ranked. Moreover, we proposed a directed 

graph construction approach to retrieve the nodes relation and direction, which aim to gain 

more performance by concern about how the score will be propagated. 

To summarize, we make the following contributions: 

 A model to retrieve subjectivity score of words through manual compiled 

argument-oriented corpus. 

 An argument-oriented TextRank to identify the argument component. 

 A directed graph construction approach to pursuing better ranking performance. 

 

380



2. Related Works 

2.1 Lexicon Expansion 

The lexicon expansion approach aims to enlarge an existing lexicon using possibility, so it 

can not only be used by itself but can also lead a classifier or a model to learn its core 

concepts. 

Previously, a lexicon-based method uses the attributes provided in the lexicon to do a specific 

task. The attribute in the lexicon usually becomes a feature that whether the target article 

contains the word or not, if contains, then the feature will switch to a state, otherwise will 

have another state. But more chances words in the target article will not appear in the chosen 

lexicon, make the feature is not as efficient as it should be. Researchers like [5] proposed a 

concept that using an existing lexicon as seed, and choose a model to learn the concept of the 

lexicon and then the model can try to predict attributes of words that not contain in the 

lexicon to maximize the feature that we want to retrieve from the lexicon. The lexicon 

expansion is accomplished in the following step, which proposed in [5]: (1) Choose a lexicon 

as seed, (2) Transfer words from text to its representation in vector space, finally (3) 

Construct and train a classifier or model to predict unknown words to retrieve the information 

the seed lexicon can give. The main workflow is shown in our research; we will use such this 

approach to enlarge an existing subjectivity lexicon to acquire words subjectivity strength 

probability for further procedure. 

 

2.2 Graph-based Summarization 

Another field and category to summarize documents are the graph-based methods. One of 

this kind is LexRank, proposed by [6]. It adopts TF-IDF to represent each words’ importance 

in the sentences, then uses a modified cosine similarity equation to construct the edges 

between sentences. 

The other approaches are TextRank and TextRank-based variation. [3] modified TextRank 

(shorten as PsTK) to rank sentences to determine which sentences are highly possible to be 

an argument component. The work constructs the graph for PageRank to iterate with 

sentences as nodes and similarity between each sentence as edges. In the original TextRank 

[7], it uses the following Equation 1 to calculate the similarity between sentences. 
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  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝑖 , 𝑆𝑗) =
|{𝑤𝑘|𝑤𝑘 ∈ 𝑆𝑖&𝑤𝑘 ∈ 𝑆𝑗}|

log(|𝑆𝑖|) + log(|𝑆𝑗|)
 (1) 

After the edges are calculated, TextRank will use PageRank, proposed by [8] to iterate the 

graph and get the scores of each node, here we treat nodes as sentences in an article. In PsTK, 

they use a different way to construct the edges. However, the method cannot convince that 

summarization is a suitable method to solve the task, since none of the operation related to 

argument, stance or reasoning. In our work, we proposed an argument-oriented TextRank, 

ArguRank, which considered argument specific characteristics to identify argument 

component. 

 

Figure 1. System framework and flowchart of our proposed method. 

3. Method 

We based on PsTK, the state-of-the-arts method on our dataset to develop our method, 

ArguRank. In the previous section, we address the issue of TextRank, motivated us to 

proposed argument-oriented TextRank, ArguRank, which aim to solve these issues and 

performs better in identifying argument components. Our proposed system will (1) read 

online debate posts, (2) preprocess the texts into sentences, (3) create sentence representation 

for calculating edge, (4) build a directed graph then (5) apply PageRank to scoring sentences. 

During this pipe which shows in Figure 1, we will apply our method to certain steps to make 

become argument-oriented TextRank, ArguRank. 
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3.1 Argumentative Scoring Model 

To make TextRank argument-oriented, we develop a model to help enhance extract hidden 

argumentative information. The corpus we use to build the model is “Multi-Perspective 

Question Answering (MPQA) Subjectivity Lexicon,” was compiled by [9]. It contains 8222 

words; each word was labeled as “strong subjectivity” or “weak subjectivity.” To get the 

score of words that are not contained in the lexicon, we use the word vector model and binary 

classifier to build an argumentative scoring model to predict the argumentative score of the 

word. To construct the argumentative scoring model, we (1) use a word vector model to get 

its vector representation, then (2) feed to a binary classifier to make it learn how to separate 

the vector into strong or weak subjectivity. 

 

3.2 Argument-oriented Summarization 

After training the classifier, we use it to get subjectivity score of each word in each sentence. 

First, we normalized the subjectivity score of words in each sentence by a softmax function. 

The sentence representation will then be calculated via Equation 2. 

 𝑆
→

= ∑𝑉𝑊𝑖

→
𝐾

𝑖

𝑎𝑖 (2) 

Where V⃗⃗  represents the word vector of Wi  and S⃗  denotes the sentence representation 

before constructing the graph for PageRank. 

 

3.3 Graph Construction 

After we acquire various sentence representations, the next step is to construct the graph that 

represents the article. We choose cosine similarity to retrieve sentence relationship as edges, 

which shows in Equation 3. 
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where 𝑆𝑖

→

, 𝑆𝑗
→

 are representations of two sentences. 

After the edges been calculated, the graph G will be constructed. 𝑆1, 𝑆2, 𝑆3 denotes the 

sentences respectively, and 𝐸12, 𝐸23, 𝐸13 indicates the similarity between sentences. 
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Based on the undirected graph, we then further apply two conditions to make it becomes 

directional. First is the condition to determine what edges are going to be discarded due to 

low similarity, which determined by 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑖𝑠 and shows in Equation 4. 

  𝐸𝑖𝑗 = {𝐸
^

(𝑆𝑖

→

, 𝑆𝑗
→

), if 𝐸
^

(𝑆𝑖

→

, 𝑆𝑗
→

) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝑖𝑠

0, otherwise
 (4) 

Next, the construction of directional graph representation will be completed in two sub-steps. 

First, every sentence will have a direction that points to its next sentence, which shows in 

Equation 5. 

 𝐸𝑖𝑗 = {𝐸(𝑆𝑖

→

, 𝑆𝑗
→

), if 𝑗 − 𝑖 = 1

0, otherwise
 (5) 

Last, the sentences which have high similarity (determined by 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑖𝑚) will be used 

to applied direction that makes two nodes points together, which similar to Equation 4 and 

shows in Equation 6. 

 𝐸𝑖𝑗𝐸𝑗𝑖 = {𝐸
^

(𝑆𝑖

→

, 𝑆𝑗
→

), if 𝐸
^

(𝑆𝑖

→

, 𝑆𝑗
→

) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑖𝑚

0, otherwise
 (6) 

where the difference is the threshold will be interpreted as how similar of the sentences will 

have a bi-directional connection. The directed graph can be visualized in Figure 2. 

 

Figure 2. A directed graph that represents the article. 

In the end, PageRank will applied on the directed graph to output the rank of these sentences. 

The top-1 ranked sentences will then be considered as argument components of the online 

debate article. 
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4. Experiments and Discussion 

4.1 Evaluation Metrics 

The methods we proposed required different evaluation metrics. For assessing the 

argumentative scoring model, first, we will use accuracy to evaluate how well the model can 

correctly predict whether the word in the lexicon that is strong or weak subjectivity. 

Moreover, to prevent the illusion that the accuracy gives we adopt sensitivity (also called the 

true positive rate, or recall) and specificity (also called the false positive rate) to observe how 

the model performs on the answer in the strong and wrong subjectivity, respectively. 

To evaluate ArguRank, we use accuracy again to assess how many articles in the dataset are 

correctly found the argument components. If the top-1 ranked sentence match one of the 

annotated argument components within an online debate article then the accuracy will raise. 

 

4.2 Result Discussion 

There are two main parts we are going to discuss in this section: (1) Building Argumentative 

Scoring Model and (2) Graph Construction. 

4.2.1 Building Argumentative Scoring Model 

We select three word vector models: Word2vec, GloVe, and fastText for comparison. The 

result shows in Table 1, which using fastText and debate posts plus Wikipedia articles as 

training corpus plus the original lexicon words can get acceptable performance on predicting 

subjectivity score of words than other methods. The model than further being used in 

applying the score of each word in sentence representation. 

Table 1. Final argumentative scoring model where boldfaced scores show that better than 

others. 

 
Word2vec GloVe fastText 

Accuracy 0.776 0.767 0.777 

Sensitivity 0.798 0.789 0.767 

Specificity 0.729 0.719 0.798 

AUC 0.834 0.829 0.86 
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4.2.2 Graph Construction 

In constructing a directed graph, due to the sentence splitting operation, some articles in our 

dataset exist only one sentence, which cannot construct the graph since no enough nodes. 

After filtering these kinds of articles, the filtered datasize is shown in Table 2, also with the 

performance of various directed graph construction approaches. By only drop connections on 

the undirected graph, the accuracy will get slightly improvement, and the performance will 

get better after direction construction with different granularity. 

Table 2. The results of different graph constructions using cosine similarity. The different 

number of size about valid dataset in use to construct graph is also shown in here. 

 
ABO GAY OBA MAR avg 

PsTK 0.469 0.528 0.582 0.641 0.555 

ArguRank 0.490 0.538 0.628 0.693 0.587 

Improvement 0.021 0.01 0.046 0.052 0.032 

 

4.2.3 Positions of Argument Components 

We apply our method to the datasize that removes the posts which one of the argument 

components is in the first sentence and PsTK predicted. The reason to remove these posts is 

in PsTK or other methods based on undirected graph, it will face a problem if the ranked 

scores are the same, the algorithm will predict the first sentence of the post to be the 

argument components. To show how our directed graph construction approach can deal with 

such this problem, we experimented on the datasize after the removal. In Table 3, we run the 

directed graph construction methods on the datasize and filtered graph size; the results show 

that by representing sentence by specific weighting mechanism and the directed graph 

construction, our method can identify argument components better than PsTK. 

Table 3. After removing the posts that one of its argument components is located at the first 

place of sentences. 

 ABO GAY OBA MAR avg 

PsTK 0.430 0.475 0.512 0.568 0.496 

ArguRank 0.503 0.553 0.609 0.634 0.575 

TextRank + ArguRank 0.515 0.548 0.606 0.637 0.577 

Improvement 0.085 0.073 0.094 0.069 0.081 
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5. Conclusions 

We based on TextRank to develop an argument-oriented and directed ranking method called 

“ArguRank,” which makes TextRank argumentative and directed. Also, we show how we 

build our research environment to expand a lexicon for identifying argumentative words and 

construct an argument representation. 

The experiments show the proof that using argument-oriented graph-based summarization 

method by applying the subjectivity lexicon to construct the sentence representation can get 

better result on extracting argument components. Moreover, the approach of directed graph 

construction significantly improves the performance of identifying argument components via 

graph-based summarization. 
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