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Abstract 

Based on the assumption that comment with positive sentimental polarity to a negative issue 

has high probability to be a sarcasm, we propose a simple yet efficient method to collect 

sarcastic textual data by crowdsourcing with social media and merging game with a purpose 

approach. Taking advantage of Facebook's reaction button, posts triggering strong negative 

emotion are collected. Next, by using PTT's search engine, we successfully connect PTT's 

comments to the collected posts in Facebook and build the sarcasm corpus. Based on the 

corpus data, the performance comparison of sarcasm detection between SVM with naïve 

features and Convolutional Neural Network models is conducted. An impressive accuracy 

rate and great potentials of the corpus are demonstrated.  

Keywords: sarcasm, PTT, convolutional neural network, support vector machine, 

crowdsourcing. 

1. Introduction

Sentiment analysis is important in automatic interpreting large number of feedbacks from the 

internet society. However, the usage of sarcasm which typically conveys a negative opinion 

using positive words could flip the polarity of a message thus interfere the accuracy of the 

sentiment analysis (Maynard et al. 2014). Therefore, to improve the performance of 

sentiment analysis model, detection of sarcasm is definitely necessary (Bo et al. 2008). 
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Linguistically, sarcasm has been regarded as a complicated speech act which utters the 

opposite of what it literally means, and it distinguishes itself with irony in its intention of 

making the target the butt of derisive contempt (Ling et al. 2016). Sarcasm can be 

grammaticalized and lexicalized in various patterns, and often requires context-dependent 

readings with human involvement. Therefore, the construction of sarcasm corpus providing 

wider windows as well as training data for predictive model has long been considered as an 

uneasy task. 

However, with the rapid growth of social media platform like Twitter and Facebook, a new 

solution is provided via crowdsourcing. For instance, a popular method in previous studies, 

some groups                                                                               

                        -          al. 2011, Reyes et al. 2012, Liebrecht et al. 2013). 

Based on the assumption that comment with positive polarity to a negative issue has high 

probability to be sarcasm, we propose an automatic method to collect sarcastic text data by a 

two-                     f       k              f F      k                                 

to the comments in Gossiping forum of PTT. 

Due to the recent progress in machine learning and deep-learning technique, these two 

method could both handle sarcasm detection as a binary (sarcastic and non-sarcastic utterance) 

classification problem. However, a performance comparison of sarcasm detection between 

these two methods has not been conducted before. In this paper, we choose machine learning 

support vector machine (SVM) and deep-learning convolutional neural network (CNN) to 

test the difference. Both of them are widely adopted in natural language processing problems 

(Joachims et al. 1998, Collobert et al. 2008, Kim et al. 2014). 

The rest of the paper is structured as follows. Section 2 describes related works on the 

construction of sarcasm and irony corpus, in Section 3, we describe the procedure of building 

sarcasm corpus and experimental settings. Results and limitations are discussed in Section 4, 

and finally, Section 5 draws the conclusion. 

 

2. Related Work 

Recently, there have been a great amount of studies in the field of NLP focusing on 

non-literal semantics such as sarcasm/irony detection. Most of the works exploited various 
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linguistic features and assembled different (semi-) supervised machine learning models in the 

task. In the view of language resources for sarcastic expressions, (Filatova et al. 2014) 

proposes a method in generating a corpus with sarcastic text utterances from Amazon product 

reviews using MTurkers; (Tang and Chen, 2014) adopt a more rhetoric-linguistic approach in 

mining ironic patterns and bootstrapping an open irony annotated corpus from microblog in 

Chinese. (Oraby et al. 2016) use lexico-syntactic cues with crowdsourced annotation to 

reliably retrieve sarcastic utterances in Dialogue. 

Considering the importance of sustainability and reproductivity of research, in this paper, we 

aim to propose a non-paid social crowdsourced and naturalistic method for acquiring corpus 

data with event and affect annotations. 

 

3. Experiment Setup 

3.1 Corpus Data 

A                                 ,                            f           k                

write down the operational definition, and causes the difficulty in automatic collection from 

large text data. Therefore, instead of analyzing the lexical structure, we detect sarcastic text 

with the assumption that positive comment to negative issue has large possibility to be 

sarcasm (Riloff et al. 2013). 

To find content that strongly triggers                          ,      k             f 

Facebook reaction button. Released on 2016/02/26 in Taiwan, users on Facebook could press 

five kinds of emotion button including ANGRY, SAD, WOW, HAHA, and LOVE to express 

their attitude toward a post in addition to the original LIKE button. We crawl the reaction 

      f A     D   y   F      k f        f    M        J  y,        k                

ANGRY has the highest accumulation among every emotion and value larger than 1,000 in 

each month as the negative content. 

                                               ,                                  “酸檸檬 

(suan níng méng)”. U                    f    A     D   y'  F      k'  f   page as topic, 

players are told to type sentence that they think has the lowest pH value. The higher sarcastic 

level, the lower pH value, and it will accumulate after each round. Once the accumulation 

exceeds 15, the game is over. Such rule could encourage players to contribute sentence with 
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high sarcastic level for longer survival. 

 

Figure 1. The real game scene of "酸檸檬 (suan níng méng)". Players are told to type 

sarcastic comment to the content above. The pH of each comment will be calculated 

according to the sentimental polarity analysis. 

There are about 400 participants joining the game. According to the design of this game, at 

least 2~3 sentences should be collected from a single player. However, there's only 300 text 

data which is much less than expectation and inadequate for machine training. By 

interviewing with some players, we find that many people decide to close the game after 

logging because they feel too much effort is needed to come up with a sarcastic sentence. 

Owing to the inefficiency of the current game framework, we then alternatively turn to the 

combination of crowdsourcing approach and social mining. Based on the famous culture of 

frequent usage of sarcasm and highly active discussion about current event (吳承樺, 2014), 

Gossiping forum of PTT should be the place second to none for building sarcasm corpus. The 

official released search engine of PTT is used to check whether the negative post from Apple 

D   y   F      k f                                   f           .  f y  ,                  

will be collected and labeled sarcastic or non-sarcastic according to the polarity analysis. The 

whole procedure is shown in Figure 2. 

Z39.50 is protocol for ... 

2. Works 
Figure 1. The Dynamite 
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Figure 2. Illustration of the procedure of building a sarcasm corpus. 

Lexicon-based approach is adopted for the polarity analysis, which depends on sentimental 

words appearing in a sentence to determine the polarity. The sentimental word list is built 

based on the TC-LIWC (黃金蘭 et al. 2012, 林瑋芳 et al. 2014) dictionary file, and two 

groups are included in the list, positive and negative. Words with posemo/negemo label are 

categorized into the positive/negative group. In addition, according our observation on PTT's 

comment, generally used curse words are also included in the negative group. 

Simple sum up algorithm then be adopted to examine the polarity of each comment. The 

polarity score of a comment will add 1 once a word belonging to positive group appears in 

the sentence, and vice versa. Note that negation and degree terms are also considered for the 

polarity flipping and strengthening. Comments with polarity >= 0 are labeled as sarcastic, 

while polarity < 0 are labeled as non-sarcastic. 

We observe that comments with negative polarity are mainly composed of curse words 

because the posts are all related to the extremely ANGRY issues. On the other hand, 

comments with polarity >= 0 indeed detect lots of sarcasm. However, in addition to the 

sarcastic comments, some non-sarcastic comments are also included in this category which 

generally focus on expressing opinion toward the issue rather than be sarcastic or irony to it. 

According to our observati  ,       f           k y       f                                

type of comment. 

To eliminate these biases, we calculate the term frequency–inverse document frequency 
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(TF-IDF) of each post, word with value larger than 0.1 as the keyword. If a comment 

contains any of the keywords, it will be filtered out. There are total 9,373 non-sarcastic and 

17,256 sarcastic comments are collected. 

 

3.2 Model Selection 

3.2.1 Supporting Vector Machine 

F   SVM,                f f             y                              n, which is a 

highly empirical experience (Taira et al. 1999). However, the advantage is that features 

included in the model training could clearly attribute the importance to the classification 

result. 

The conduction of SVM calculation is based on Python library scikit-learn (Pedregosa et al. 

2011). According to the previous study (Mathieu, 2014), n-gram is a very effective feature for 

sarcasm detection, thus we choose to use bigram, trigram and tetragram of sarcastic 

comments as the feature for SVM model training. We only keep n-gram whose term 

frequency is higher than 3, and the total number of feature is 26,751. All the comments are 

encoded into a binary sparse matrix. An element of the matrix will be assign as 1 when the 

corresponding feature is included, and 0 vice versa. Linear kernel is used. The parameter C 

and gamma are both set to the default value. 

 

3.2.2 Convolutional Neural Network 

Due to the achievement of good text classification performance and the similarity of using 

short sentence data (Kim et al. 2014), CNN is selected as the representation of deep learning 

model for the sarcasm detection task. Figure 3 shows the structure of CNN used in our 

experiment. 

For CNN, features are automatically extracted from the corpus through the filter, pooling 

algorithm and the complex neural network structure. Although deep-learning model could 

include features more thoroughly, one could not trace back the actual contribution from each 

feature. 
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Figure 3. Illustration of the CNN structure. Input data will project into virtual space via 

word2vec in embedding layer. Three convolution layers with filter window size 2, 5, and 10 

are used to extract features from the data. 

 Because the comments are collected from the Gossiping forum of PTT, we use Python 

Chinese Word Segmentation library JSEG developed by our lab which include PTT corpus to 

tokenize our data. Only top 20,000 frequently used tokens are remained as our input. The 

max length of a comment is defines as 20 words. If the length of a comment is less than 20, 

zero padding is adopted. 

Python library Keras is used to do the CNN calculation (P.W.D. Charles et al. 2013). The 

embedding layer will conduct word2vec transformation projecting the input into a virtual 

space with 100 dimensions, and the basis of this virtual space is uninterpretable. Three 

different filters are used and all with number 200. These filters will slide through the virtual 

space created by embedding layer with stride size of 1 and extract fragments of the matrix. 

Rectified linear unit (ReLU) is employed as the activation function. All these fragments will 

go through a successive max pooling algorithm to generate lots of features. 

From Figure 3, we can see that features from the three different CNN layer will concatenate 

together and feed into hidden layer with 50 neurons. Dropout rate 0.5 is used. Softmax, cross 

entropy and Adam are used as the activation function, loss function and optimization 

algorithm of the output layer. 
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4. Discussion 

Both of the models are trained with a balanced data set, composing 9,373 non-sarcastic and 

9,373 sarcastic data randomly sampled from the 17,256 data. Here we use Gaussian Naïve 

Bayes model as the baseline result to compare with. The same n-gram feature for SVM and 

default parameter setting are adopted. Although the n-gram has included as features for both 

Naïve Bayes and SVM, the average accuracy of 5-fold cross validation only reaches 57.9% 

and 55.4% respectively, which is just slightly higher than a random guess. 

From the bigram, trigram and tetragram of the comments with polarity >= 0, we observe 

some specially used word appearing with high frequency. Some of them are topic-oriented, 

  k  “三寶 (san bǎo)”       y                        .             re globally showed under 

  ff           ,   k  “不意外 (bú yì wài)”. U        P                             k           

make comment sarcastic.  

Table 1. Average accuracy of 5-fold cross validation 

model  average accuracy 

Naïve Bayes 57.9% 

SVM 55.4% 

CNN 87.1% 

 

In contrast, CNN gets impressive 87.1% accuracy of 5-fold cross validation without human 

involvement in the feature engineering. The 1-D convolution layer collects features by filters 

with different size sliding through the semantic space, and the successive max pooling 

         .                      y                        f     f           f                 k, 

however, the result shows that such algorithm seems to include the sarcastic pattern more 

precisely than the n-gram feature in this pilot study. 

However, it is noted that in the current study, it is not our intention to 

employ/discover/evaluate the most reliable linguistic features that signal the presence of 

sarcastic utterance in Chinese, such as those identified in English and other languages: 

emoticons and onomatopoeic expressions for laughter; heavy punctuation marks; quotation 

marks; positive interjections, or pragmatic features like smiley and frown that have been used 
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as discriminating features in the classification tasks. Gaining insights from linguistics, 

psychology and cognitive science, we argue that since there is no common agreement on the 

operational definition of sarcasm and related linguistic phenomena, any one-size-fits-all 

methodological attempt will run the risk of overfitting and over-generation. 

The real challenges of sarcasm detection in texts involves not only linguistic knowledge 

represented in lexical, semantic-pragmatic, discourse levels, but also common-sense 

knowledge which is contextualized, situation-anchored and highly individuated. That is, most 

cases of sarcastic text utterances can only be understood when an individual/a social group 

placed within a broader context in responding to a certain situation. It is thus more urgent at 

this stage to build language resources for the exploration of influential factors and social 

ontologies for situated machine learning models on this task. 

 

5. Conclusion 

In this paper, based on the assumption that comment with positive polarity to a negative issue 

has high probability to be sarcastic, we propose an automatic method to build a sarcasm 

corpus that is advantageous of its situation-driven architecture and potentials for real-time 

          . S     f                 f              ,    f       k       f F      k   

reaction button to collect posts related to negative issue, finding comments to these posts 

from PTT, and finally label these comments sarcastic or not based on the sentimental polarity 

analysis. 

Using the comments as training data, we compare the sarcasm detection performance of 

machine learning SVM and deep-learning CNN. The result shows that the difference in the 

feature engineering has great impact on the classification accuracy. Both trained by balanced 

model, CNN model could reach about 87% accuracy, which is far better than the 55% 

accuracy got from SVM. Although previous studies show that n-gram features have great 

importance in sarcasm detection, the automatic feature extraction from neural network seems 

to have more information in distinguishing a comment is sarcastic or not. 

In summary, we propose a social crowdsourcing-based sarcasm corpus generation procedure 

which could efficiently collect sarcastic comments from PTT together with their original 

situations, which can be used for a closer look at the nature of sarcastic expressions, and the 

training data for different machine learning models as well. A preliminary experimental result 
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shows that deep-learning CNN has much stronger ability in detecting sarcasm than SVM. 

We are planning to improve our online game "酸檸檬 (suan níng méng)" from tedious typing 

to providing dropping menu for selecting the most sarcastic comment collected from PTT. 

The complete pipeline from Facebook fan page negative posts identification to PTT 

comments collection and polarity analysis is ongoing. Players no longer need to figure out 

sarcastic comments by themselves, rather they just need to select out the most sarcastic PTT 

comments toward to a specific issue. We believe such improvement could largely decrease 

the effort to play the game, and could enhance the intention to contribute annotation data. 

By making use of such data, we could further filter out the biases in the sarcastic corpus, and 

develop the original sarcasm classification into sarcastic level regression problems which will 

facilitate and shed new light on a more realistic and individuated sarcastic computing. 
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