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Abstract 

In the beginning, search engines provide placements next to the original search results 
for advertisers on specific keywords. Since users often search for their interests or purchasing 
decision, timely presenting proper advertisements to users will encourage them to click on 
search ads. With the rapid growth of advertising, there is a bidding mechanism that 
advertisers need to bid keywords on their ads. They should carefully compose keywords in 
order to enhance the opportunity for their ads to be clicked. Until now, how to efficiently 
improve the ad performance to earn more clicks remains a main task. 

In this paper, we focus on the scope of smart phone and produce a social intentional 
model with advertising based features to forecast future trend on ads’ click-through rate 
(CTR). In terms of social intentional model, we analyze Chinese text content of technology 
forum to derive social intentional factors which are Hotness, Sentiment, Promotion, and 
Event. Our results indicate that with knowing public opinions or occurring events beforehand 
can efficiently enhance click prediction. This will be very helpful for advertisers on adjusting 
bidding keywords to improve ad performance via social intention. 

Keywords: Advertising, Sponsored Search, Click-Through Rate, Social Intention. 

1. Introduction

For online search advertising, the well-known search engines such as Bing, Google, and 
Yahoo! enable ads to be shown on the top banner or alongside the search results. This 
generates most of the revenue for search engines. The most common mechanism is 
cost-per-click (CPC), which means the advertiser bid on keywords but only be charged for 
each user click on the ad. Both search engines and advertisers look forward to enhancing the 
ad’s click-through rate (CTR), which indicates the probability of the number of ad clicks 
divided by the number of ad impression. The ad position is on the basis of the ranking score 
which is computed by the multiplication of CPC and ad quality score. The ad quality depends 
on plenty of factors that cause an ad to be clicked like ad’s keywords, historical CTR, title, 
description, display URL, landing page, etc. Moreover, CTR is an important and direct metric 
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for measuring advertised performance. 
This paper will focus on forecasting ad keyword’s CTR trend, since different bidding 

keywords in the same ad have various CTR values. Target on the popular 3C products: smart 
phones, we use the public information from technology forum to predict ups and downs of 
the next day CTR. 

As [1] statistics, the top three most important factors influencing consumer choice of 
mobile phones are: innovative features, recommendation and price. We extend these criteria 
as following factors: Hotness, Sentiment, Promotion, and Event. All these factors may 
affect ad’s future CTR as Figure 1 depicted. For example the releasing news, a kind of events, 
may trigger users search on search engine or forum to look for product comments in detail. 
Users may click more on ads while the ads containing promotion terms or the promotion 
news is releasing. 

Figure 1. The impact on CTR from releasing news to people reaction 

 The purpose of this study is to predict and analyze which factors that affect ad keywords’ 
CTR in the next day. This work could previously inform advertisers of user intention on 
product keywords and assist them to judge whether to change ad strategy or not. It appears 
that research has not yet been available concerning the effect on search advertising from 
forum opinions. We expect that this work could significantly aid advertisers in advertising 
production. 
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2. Related Work

Even now, there are still lots of research on improving advertising performance in order 
to verify which features could probably affect ad clicks. We will introduce some related 
researches that predicted clicks on search advertising; moreover, for the same predicting task 
but in different research domain, there exist some studies that use public mood to predict the 
stock trend in the stock market. 

2.1 Traditional click prediction problem 

Regelson and Fain [2] claimed that historical click information provides tangible 
examples of user behavior. To predict future click-through rate by term level, for those terms 
with low frequent or completely novel terms, they use hierarchical clusters of related terms to 
compute. Apart from terms, Richardson et al. [3] suggested that adding features of ads, and 
advertisers can accurately predicts the click-through rate for new ads. The collected 
information of ads contained landing page, bid terms, title, body, display URL, clicks, and 
impressions (views). 

User intentions may significantly vary in the same query. Guo et al. [4] develop a 
fine-grained user interaction model for inferring searcher receptiveness to advertising. They 
modified the Firefox version of the OpenSource LibX toolbar to instrument mouse 
movements and other user action events on search result pages. Cheng and Cantú-Paz [5] 
develop demographic-based and user-specific features that reflect the click behavior of 
groups and individuals.  
 To strengthen the relation between query and ad, Dave and Varma [6] proposed a 
similarity method to give prediction. Especially for those rare/new ads, they used cosine 
similarity between two queries or two ads. Xiong et al. [7] designed a continuous conditional 
random fields (CRF) based model, which considered both features of an ad and its similarity 
to the surrounding ads.  

2.2 Using social media for prediction 

The prediction problem on trend is analogous to click prediction. Bollen et al. [8] first 
used six dimensions of mood(tension, depression, anger, vigor, fatigue, confusion) from 
Profile of Mood States(POMS), a well-established psychometric instrument to observe the 
relation between moods and socio-economic phenomena. After that, Bollen et al. [9] 
expanded terms of POMS from Google webpages, named it GPOMS. GPOMS contained six 
different mood dimensions: Calm, Alert, Sure, Vital, Kind, and Happy. They used Granger 
causality analysis to investigate the hypothesis of public mood states and a Self-Organizing 
Fuzzy Neural Network to predict the daily up and down changes of Dow Jones Industrial 
Average (DJIA) in the stock market by the OpinionFinder and GPOMS mood time series. 
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3. Method

In this section, we present our proposed framework as shown in Figure 2 to address the 
problem of predicting ad keyword CTR via adding social phenomena. In brief, given an ad 
keyword as an input, our system returns the direction of movement in the next day based on 
previous advertising data and social intention effects. First, in advertising-based part, we do 
the CTR filtering to be basic information on an ad keyword. Next, before running the main 
process, the social intentional factors have been built from historical public behaviors on 
technology forum. After that, we crawl the related articles on technology forum in recent time 
duration to calculate social intentional scores. Thus, with these two-part values, we can run 
the prediction model in the last process. The results are produced from Linear Regression 
model and SVM classification model. 

Figure 2. Proposed framework 

According to user preference on purchasing, we propose four extracting methods to 
produce Hotness, Sentiment, Promotion, and Event that may be sufficient to affect user click 
on ads. The data used for methods in this part is Mobile01 articles from November 1, 2012 to 
January 31, 2013 which contains 21,674 articles. In the following parts, we will introduce 
these methods with Mobile01 articles in detail. 

- Hotness - 

The “Hot” means feverish, to become lively or exciting1 that can informal arouse 

1 http://en.wiktionary.org/wiki/hot 

Figure 1. The Dynamite

Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013)

281



intense interest, excitement, or controversy2. What we need to do is find out those proper 
themes that stimulate public to discuss on technology products. Focusing on smart phone in 
our work, we consider the phrases are broadly and frequently mentioned between articles, 
such as the phone’s appearance, functionality, price, etc. Inverse Document Frequency (IDF) 
is a measure of whether the term is common or rare across all articles as shown in Eq.(1), 
where |𝐷| is the number of all articles, and |   𝑑!|𝑑! ∈ 𝐷   | is the number of articles 
containing the phrase  𝑡𝑖. We choose the IDF range from 0 to 4 which contains 379 terms to 
be hot candidates. 

  𝐼𝐷𝐹! = 𝑙𝑜𝑔  
𝐷

𝑑!|𝑑! ∈ 𝐷
(1) 

We randomly pick some terms in IDF of all articles less than 4 and greater than 8 to 
check what the terms look like and display it in Table 1. The range of IDF less than 4 closely 
meet our expectation. 

Table 1. Terms look like when IDF less than 4 and IDF greater than 8 

Terms in IDF < 4 Terms in IDF > 8 

功能, 蝴蝶, 三星, 智慧型, 蘋果, 品質, 

規格, 價錢, 價位, 耗電, 解析度, 畫素, 

優勢, 瑕疵, 配件, 廠牌, 費率, … 

抗刮性, 輕量版, 超薄超順超, 機王戰, 

獨家版, 獨特感, 磨砂款, 機防撥水, 

高精度, 超簿, 優質感, 質量感, … 

When a hot article comes up, there must be widely discussed and viewed by a crowd of 
people. Thus we gather the articles having top 1 percent high prestige3 in each category and 
obtain 222 of them in all articles. Because hot terms are feverish and most talked-about 
subjects, we sort these 379 candidate terms by Term Frequency (TF) value in a descending 
order from all articles. The TF value is calculated by Eq.(2), where 𝑛!,! is the number of 
term 𝑡! appears in article  𝑑!, and 𝑛!,!!  is total number of terms in article  𝑑!. It means 
each candidate terms has 21,674 TF ranking value from all articles. Next, we set a threshold 
on 222. That is, if top-222 TF article values contain one of hot articles (222 articles), this 
candidate term will be chosen as hot term. 

  𝑇𝐹 𝑡!" =   
𝑛!,!
𝑛!,!!

(2) 

With hotness lexicon 𝑙𝑒𝑥𝑖𝑐𝑜𝑛!, input an ad keyword and a date, we could calculate the 

2 http://www.thefreedictionary.com/hot 

3 “Prestige” here is said the number of views to the article. 
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hot score from daily articles by Eq.(3), where 𝑎! is one of keyword-related articles from the 
set 𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!, 𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!  is the number of keyword-related articles that are crawled in 
the date time, and 𝐶𝑜𝑢𝑛𝑡(ℎ! ,𝑎!) is the count of hot term ℎ! appears in article 𝑎!. 

  𝑆𝑐𝑜𝑟𝑒!"#,! 𝑑 =   
𝐶𝑜𝑢𝑛𝑡(ℎ! ,𝑎!)!!∈!"#$%&'!!!∈!"#$%&'!!,!

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!
(3) 

- Sentiment - 

In this part, we want to analyze public moods and opinions for a product from articles. 
The first step is to build a sentiment lexicon. We utilize NTUSD[10] and HOWNet4 to obtain 
4140 positive terms and 6608 negative terms with no repeats as our sentiment 
lexicon    𝑙𝑒𝑥𝑖𝑐𝑜𝑛!. Although the number of negative terms is more than positive terms used, it 
does not affect the orientation of public opinions. 
 The sentiment score for an ad keyword with a date is calculated by Eq.(4), where 
𝑆𝑐𝑜𝑟𝑒 𝑠! = +1 if 𝑠! is a positive term, otherwise is  −1, and 𝐶𝑜𝑢𝑛𝑡(𝑠! ,𝑎!) is the count of 
sentiment term 𝑠! appears in article  𝑎!. 

  𝑆𝑐𝑜𝑟𝑒!"#$%,! 𝑑 =   
𝑆𝑐𝑜𝑟𝑒 𝑠! ∗ 𝐶𝑜𝑢𝑛𝑡(𝑠! ,𝑎!)!!∈!"#$%&!!!!∈!"#$%&'!!,!

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!
(4) 

- Promotion - 
 Everyone knows that selling products with discount phrases is noteworthy to public. At 
first we pick 15 terms that contain promotional meaning to be seed words. They are 特價

(Special offer), 降價(Price reduction), 優惠(Preferential), 特賣(Clearance), 特惠(Specials), 
福袋(Lucky bag), 抽獎(Lottery), 折扣(Discount), 獨享(Exclusive), 好康(Good things), 
下殺(an auxiliary verb for discount in Chinese), 免費(Free), 放送(Gift), 便宜(Cheap), and 
划算(Saving). To build a lexicon on promotion, we expand these terms by analyzing word 
co-occurrences in front and rear 5-term collections by Yahoo! top-200 query results in a past 
year.  
 For calculating promotion score, we produce a formula in Eq.(5), where 𝐶𝑜𝑢𝑛𝑡 𝑝! ,𝑎!
is the count of promotion term 𝑝! appears in article  𝑎!. 

  𝑆𝑐𝑜𝑟𝑒!"#$#%&,! 𝑑 =   
𝐶𝑜𝑢𝑛𝑡(𝑝! ,𝑎!)!!∈!"#$%&!!!!∈!"#$%&'!!,!

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!
(5) 

4 http://www.keenage.com/html/c_index.html 
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- Event - 
We have observed that news or events may affect ad keyword’s CTR in the next few 

days. Thus we propose the number of bursty replies on forum articles to model an event 
effect in a numerical manner. By using Eq.(6), where 𝑡!! is the post time of the article 𝑎!, 
𝑡! is the time duration we set to a half-day, and 𝑅𝐶(𝑎! , 𝑡!! , 𝑡!) is the reply counts based on 
two former parameters, our event score is produced. 

𝑆𝑐𝑜𝑟𝑒!"#$%,! 𝑑 =   
𝑅𝐶 𝑎! , 𝑡!! , 𝑡!!!∈!"#$%&'!!,!

𝐴𝑟𝑡𝑖𝑐𝑙𝑒𝑠!,!
(6) 

3.3 Advertising-based model 

Usually, advertisers would combine the product name with some terms like: 價格

(price), 便宜(cheap) to be a bidding keyword. Hence if we wonder to look for the specific 
keyword’s data on certain day, all kinds of keyword combination should be taken into for 
consideration. Table 2 displays a part of bidding keywords on “iPhone 5”. 

Table 2. Bidding Keywords on “iPhone 5” 

apple iphone 5 16G 評價, apple iphone 5 功能, Apple iphone 5 哪裡買, 

Apple iphone 5 售價, apple iphone 5 發表, Apple iphone 5 開箱,  

iphone 5 價格, iphone 5 規格, … 

Thus, for those keyword-related ads that are crawled in the date time, we define them 
as  𝒜𝒟!,! = {𝑎𝑑!,𝑎𝑑!,… ,𝑎𝑑!}. For those bidding keywords from the keyword-related ad on 
the certain day are presented as  ℬ!"! = {𝑘!, 𝑘!,… , 𝑘!}. 𝐶𝑇𝑅(𝑘!) is the click-through rate of 
the bidding keyword  𝑘! in the ad 𝑎𝑑!. With these advertisements and bidding keywords, we 
could compute CTR value for the objective keyword on certain day as follows: 

𝐶𝑇𝑅! 𝑑 =   

𝐶𝑇𝑅(𝑘!)!!∈ℬ!!!
|ℬ!!!|

!"!∈𝒜𝒟!,!

𝒜𝒟!,!

(7) 
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4. Experiments

4.1 Dataset and preprocessing 
Our dataset of technology forum is from Mobile01.com5 which is an Internet forum 

being devoted to discussing a variety of mobile phones, mobile devices, 3C products, etc. We 
crawl 4 months data from November 1, 2012 to February 28, 2013 with twelve categories. 
The information we extract from forum articles includes 15 available attributes. The ultimate 
decision on attributes using are Category, Prestige, Title, Replies, Post Date, and Post 
Content. 

WIS Internet Inc.6 is currently a Yahoo! Taiwan Search Marketing Ambassador. It is 
thanks to WIS assist in providing advertising data to us that our research is getting more 
credibility. The duration of advertising data is 3 months from December 1, 2012 to February 
28, 2013. Since our study is focused on smart phone, the dataset consists of 10 related 
advertisers, 2,283 ads and 14,537 ad keywords. The information we use to experiment are 
Advertiser ID, Ad ID, Date, Keyword, Ad Group, Ad Campaign, Impressions, Click-Through 
Rate, Clicks, and Keyword average Ranking. 

Before we do our experiments, we preprocess our dataset in advance. We use CKIP to 
split Chinese phrases from content of articles and obtain POS tags. The distribution of the 
number of articles and replies in training and testing data are shown in Table 3. 

Table 3. Data statistics in training and testing 

Item In training In testing 

Date Dec.1, 2012~Feb.14, 2013 Feb.15~Feb.28, 2013 

# of categories 12 12 

# of articles 18,125 2,984 

# of replies 187,821 35,353 

4.2 Results and discussion 

In order to evaluate the performance of our system and to compare with the baseline, 
forecasting CTR value and CTR up or down prediction is measured in terms of the Average 
Mean Absolute Error (MAPE) and the direction accuracy. Based on the CTR values produced 
from advertising model, we add keyword’s daily average position as our baseline to 
strengthen the predicting capability. 

In Figure 3, we observe that for using previous 4 days data, some of factors predict well 

5 http://www.mobile01.com/ 

6 http://www.wis.com.tw/eng.html 
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than baseline but not all of them do. Since each factor has its characteristic which are 
demonstrated from daily forum articles. With using more previous data, the increasing 
reference data can aid the prediction. 

Figure 3. CTR daily prediction with different social intentional factors 

 For ups and downs prediction, Figure 4 illustrates that for using previous 2 days data, 
adding Sentiment information has an outstanding performance. Besides, the overall 
conditions for using previous 6 or 7 days data have better prediction. We observe that only 
using advertising data may not enough to predict future CTR trend. However, with our social 
intentional methods, the prediction will more accurate and each social intentional factors are 
more significant in different previous days usage. 

Figure 4. CTR ups and downs prediction with different social intentional factors 

5. Conclusion
In this paper, we propose the social intentional methods derived from a popular 

technology forum to forecast CTR trend on Chinese search advertising. Differs from 
traditional advertisement click or not prediction, our model focuses on the specific ad 
keyword and predicts its next day CTR value and direction of movement. In particular, we 
construct three corpora and one factor from forum to represent public perspectives on mobile 
phones. Based on these corpora, we can find which terms are most discussed by people in 
Hotness, or which terms are probably attractive to people in Promotion, etc. Our results 
present that social intention will affect an ad keyword’s future CTR soon or delayed a few 
days. The reason is that people may discuss or read experiential articles on forum before 
searching or purchasing on search engine. With public disposition and market tendency, we 
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can precisely indicate which factors influence the specific ad keyword the most in recent days. 
This approach is very helpful to advertisers who want to publish a new ad or adjust the 
keywords of the ad. Furthermore, our proposed method can not only use in the scope of 
mobile phones but also expand to other marketing fields like brand analysis, beauty makeup, 
or clothes. 
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