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Abstract
Spelling error is broadly classified in two categories namely non word error and real word 
error. In this paper a localized real word error detection and correction method is proposed 
where the scores of bigrams generated by immediate left and right neighbour of the candidate 
word and the trigram of these three words are combined. A single character position error 
model is assumed so that if a word W is erroneous then the correct word belongs to the set of  
real words S generated by single character edit operation on W. The above combined score  is 
calculated also on all members of S. These words are ranked in the decreasing order of the 
score.  By  observing  the  rank  and  using  a  rule  based  approach,  the  error  decision  and 
correction candidates are simultaneously selected. The approach gives comparable accuracy 
with other existing approaches but is computationally attractive. Since only left and right 
neighbor are involved, multiple errors in a sentence can also be detected ( if the error occurs 
in every alternate words ).

Keywords: Real word error, Local context.

1. Introduction

Word  error  is  a  major  hindrance  to  the  real  world  applications  of  Natural   Language 
Processing. In textual documents, word-error can be of two types. One is non-word error 
which has no meaning and other is real word error which is meaningful but not the intended 
word  in  the  context  of  the  sentence.  Of  these,  non-word  has  been  widely  studied  and 
algorithms to detect and suggest correction word for the error have been proposed. These 
algorithms  are  generally  termed  as  spell-checker,  which  are  integrated  in  various  word-
processing software like Microsoft Word1, LibreOffice Writer2, Ispell3, Aspell4 etc.  For error 
occurring at two positions of a word, the commercial spell checkers work fairly well. Some 
studies on spell checking approaches are found in [1-5], that include English and non-English 
language like Bangla. 
However, the problem of real-word error is a more complex one. Usually, such error disturbs 
the syntax and semantics of the whole sentence, which requires human-being to detect it. 
However, an automatic syntactic/semantic analysis of a 'correct' sentence itself  is a difficult 

1 Microsoft Word is a word processor developed by Microsoft.
2 LibreOffice Writer a free open-source word processor.
3 Ispell is spell-checker for Unix.
4 Aspell is a free spell-checker for GNU software system.
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task and the analysis of an 'erroneous'  sentence is almost impossible in most cases.  Any 
word-error can be represented in terms of insertion, deletion or substitution of one or more 
character. If we consider 'space' as one character, the problem can become more complex. For 
example, the word 'within' can become 'with' and 'in' if a 'space' is inserted wrongly after 'h'. 
Conversely, 'with' and 'in' can be merged to 'within' if a 'space' is unintentionally missed. This 
can be regarded as 'Split error' or 'Prune-on error'. Exploring further, 'these' can be split into 
'the' and 'se'. This is an example of mixed case where the first part is real-word error and the 
second part is non word error, making them more difficult to correct. Real-word errors are 
also found in dyslexic text written by person having Dyslexia. Moreover, not only human-
beings,  these errors can occur  due to  'Auto Correction'  feature of some word processing 
software [6]. Sometimes by man and machine together, when user chooses a wrong word 
from list of suggestion against a flagged error by word processing software [7] .

To the best of our knowledge, the problem of real-word error is still  at the research and 
development stage where instead of going at the full sentence level, anomaly is searched at 
the word bigram or trigram level. The first work in this direction was due to Mays et al. [8]  
who considered word trigram i.e. Second order Markov process for language modelling. If a 
word (W) in the sentence is  unintended ( i.e. erroneous) , then  the correct word is assumed 
to come from the members of confusion set of real word C(W) of W generated by single edit  
operation. In this model, the observed word W is assumed to be correct with probability or 
degree of belief α. Hence any member of C(W) is equally likely to be a correction candidate 
with constant probability (1- α) / n where n is the cardinality of C(W). The member for which 
the sentence probability is maximum is the correction word.
In this paper we present a simpler method to deal with the real word errors based on bigram 
and  trigram model.  The  method  tries  to  detect  an  error  by  noting  bigrams  and  trigram 
constituted by immediate left and right neighbour of candidate word and then generate some 
suggestions according to ranks/score  calculated for the correction set of words. Here we use 
BYU5 corpus of bigram and trigram corpus  while  test  our method on text  from Project 
Gutenberg6.
This paper is organized as follows. Section 2 covers overview of related work. In section 3 
we  present  our  method.  Section  4  highlights   evaluation  and  experimental   results. 
Concluding remarks are given in section 5. 

2. Related Work

Apart from Mays et al. [8], several other methods have been proposed to handle real word 
spelling error problem. They are mainly based on either semantic information or  machine 
learning and statistical method. 
Among  them,  Golding  and  Schabes  [9]  introduced  a  hybrid  approach  called  'Tribayes' 
combining  Trigram and  Bayes'  method.  Trigram method  uses  part-of-speech  trigrams  to 
encode  the  context  whereas  Bayes'  is  a  feature-based  method.  They  use  two  types  of 
features :  context word and collocations. Their method worked better than MS-Word on a 
predefined confusion set.  Later Golding with Roth [10] proposed a Winnow-based method 
for real word detection and correction. They modified the previous method [9] by applying a 
winnow  multiplicative  algorithm  combining  variants  of  winnow  and  weighted  majority 
voting and achieved better accuracy. However , they used a small data set in their experiment. 
Word-net was considered as first lexical resources for real word error by Hirst and St-Onge 

5 Details of Brigham Young University corpus can be found at http://corpus.byu.edu/.
6 Project Gutenberg is a collection of free electronic books, or ebooks. Details is available at 
http://www.gutenberg.org
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[11].  They  used  a  robust  database  of  1987-89  Wall  Street  Journal  corpus  as  test  data. 
Following them [11], Hirst and Budanitsky [6] made a study of the problem on same corpus 
of Wall Street Journal.  Their method identifies tokens that are semantically unrelated to their 
context  and  was  not  restricted  to  checking  words  from  predefined  confusion  set.  They 
achieved  Recall  of  23%-50%  and  Precision  of  18%-25%.  In  another  Word-net  based 
approach, Peddler [12] showed that semantic association can be useful in detecting real-word 
error using some confusion sets especially in case of Dyslexic text [13]. She achieved recall 
and precision of correction 40% and 81%, respectively for Dyslexic text. But most of these 
approaches consider that writers make spelling error by writing words which are semantically 
closer to what they intended to write. But this may not be generally true for Real-word error. 
W. O. Hearn et al.  [7] analysed the advantages and limitations of  Mays' [8] method and 
present  a  new evaluation  to  compare  with  Hirst  and  Budanitsky  [6].  They  showed  that 
optimizing  over  sentences  gives  better  result  than  the  variants  of  the  algorithm  which 
optimize over fixed length of windows on WJS corpus data.
Statistically  based  approaches  are  highly  dependent  on  corpora--its  size  and correctness. 
Results vary with its size and existence of words. Our approach is based on the notion that 
words used less frequently are less likely to be an instance of real-word error.

3. Proposed Method

Our proposed algorithm initially  chooses  a  confusion  set  for  each  candidate  word  using 
Levenshtein distance [14] equal to one from the dictionary words. Then it calculate the ranks 
of the elements of the confusion set.  Based on that it  detects an error and suggests some 
words against the detected error. Both detection and suggestion are computed simultaneously, 
which is an advantage of this algorithm.

3.1. Confusion Set by  Levenshtein Distance

The confusion set for a test word ( W ) is a set of words from the lexicon which can generate 
W by  single  edit  operation.  As  stated,  we  use  Levenshtein  Distance,  also  known  as  as 
minimum  edit  distance,  which  is  the  minimum  number  of  edit  operations  required  to 
transform one word into another. An edit  operation is  either an insertion,  deletion or a 
substitution of a character in the word. In our proposed model, for simplicity,  we consider 
single error in the word.  The confusion set may be represented as 

C (W i )={W 1
i ,W 2

i ,. . .,W j
i , . .. ,W ki

i }

where W i  is the i-th word in the test sentence and k i is number of elements in the C(W i
) . 

To generate this set we use a list of approximately 110,000 English words7. For convenience 
we rename W i as W 0

i and define 

C' (W i )={W 0
i ,W 1

i ,W 2
i , .. . ,W j

i ,. . .,W ki

i }

3.2. Forming N-gram model

Now we consider  the  sets  of  left  bigram,  right  bigram and trigram for  each member  of 
C ' (W i

) .   We try to form them by taking left  word,  right  word and both of them ( for 

7 http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt
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trigram ). By this, the number of  each type of Bigrams as well as Trigrams generated for W i

is k i+1 . Thus for W i ,  the following Bigrams and Trigram will be generated. 

Left Bigram : W i−1W j
i

Right Bigram : W j
i W i+1

Trigram : W i−1 W j
i W i+ 1

where 0 ≤ j ≤ k i

Next we count the occurrence of these bigrams and trigrams from the BYU n-gram corpus of 
English. 

3.3. Estimating N-Gram Probabilities

One of the ways to calculate probability of the sentence in N-gram  model is using Markov 
chain rule. According to Markov assumption, probability of some future event (next word) 
depends only on a limited history of preceding events (previous words). For example in a 
bigram language model for a sentence of m words W 1 ,W 2, ... , W m it can be calculated as

P (W 1 ,W 2 , .. . ,Wm ) =
P (W 1∣Ь) P (W 2∣W 1) P (W 3∣W 2) .. . P (W m∣W m−1 ) P (Ь∣W m )

where Ь denotes blank.
In our model we do not calculate the sentence probability.  We take a weak assumption that  
occurrence of any event ( word ) depends on its previous and next events ( words ) only and 
independent of other events ( words ) in the sentence. By Maximum Likelihood Estimation 
we get the bigram and trigram probabilities as 

P1 (W j
i∣W i−1 ) =

count (W i−1W j
i )

∑
r=0

k i

count (W i−1 W r
i )

 (1) 

P2 (W j
i∣W i+ 1) =

count (W i+1W j
i )

∑
r=0

k i

count (W r
i W i+1)

 (2)

P3 (W j
i∣W i−1 ,W i+1 ) =

count (W i−1 W j
i W i+ 1)

∑
r=0

ki

count (W i−1W r
i W i+1)

 (3)

By equation (1) , we calculate P1  of each element of confusion set for each word using left 
bigram count. The denominator here represents the summation of all bigrams consisting of 
the previous word and one word from the confusion set. We get the counts directly from the 
BYU corpus. In the same way  we compute P2  using right bigram count in BYU corpus by 
equation  (2).  We  compute  it  for  every  elements  in  respective  confusion  set  so  that  the 
following condition is satisfied :
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∑
r= 0

k i

P1 (W r
i
∣W i−1) = 1

∑
r= 0

k i

P2 (W r
i
∣W i+1) = 1

For  equation 3, we use the trigram count of BYU corpus. The denominator here represents 
the summation of all trigram consisting of the previous word, one word from the confusion 
set and the next  word. We get numerator value as before. We do it for every elements in 
confusion set so that it implies :

∑
r= 0

k i

P3 (W r
i
∣W i−1 ,W i+1) = 1

We combine the probability estimates of equations (1), (2), (3) into a score of evidence that a 
W j

i may  be  correct  alternative  to W i .  The  score  can  be  obtained  by  simple  addition  as 
follows. The values obtained from equation (1), (2) and (3) can be combined to get the final 
score Score (W j

i ) by adding up. We use both the bigrams and trigram to be less dependent on

a particular bigram or trigram.

Score (W j
i ) = P1 (W j

i ∣W i−1 )+P2 (W j
i ∣W i+1 ) +P3 (W j

i∣W i−1 ,W i+1 )     (4)

Note that 0 <= Score (W j
i ) <= 3. Later on we noted that simple addition does not lead to best

results. Hence we go for a weighted combinations score.

3.4. Weighted combination score

Higher and lower order n-gram models have different strengths and weaknesses . High-order 
n-grams are sensitive to more context, but have sparse counts. On the other hand,  low-order 
n-grams consider only very limited context, but have robust counts. In order to follow the 
principle  of  Interpolation  we  put  a  weighting  scheme   on  score  generated  by  trigram. 
Combining them like equation (4) :

Score (W j
i ) = λ1 P1 (W j

i∣W i−1)+λ2 P2 (W j
i∣W i+1)+λ3 P3 (W j

i ∣W i−1 ,W i+1) (5)

The values of λ1, λ2 and λ3 can be computed by optimizing the accuracy on the training set. 
Let λ1 + λ2 + λ3 = 1 . We noted by trial and error that the results on the training set are best if 

λ3 = 2λ2 = 2λ1 . Then λ1 = λ2 = 0.25 we get λ3 = 0.5 . Also, W j
i is limited by

0 ≤ Score (W j
i )<= 1

3.5. Error detection & choice of suggestions

To confirm a word as a real-word error, we set some rules. At first, we arrange the score for 
members of confusion set in a descending order. Also a Stemming8 method described later 
with an example, is used in our error detection. In addition to the above, we have used the 

8 According to  Wikipedia,  'In  linguistics  morphology and  information  retrieval,  Stemming  is  process  for 
reducing inflected (or sometimes derived)  words to their stem, base or root form-generally a written word  
form'.
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apriori belief that the observed test word is not a real word error. In their experiment Mays et 
al. obtained optimum value of this belief as 0.99 [8] which is used in our case as well. In 
other words, we believe that the test word can be a real word error in 1% cases. This value is  
used in normalizing the score in the real-word error detection algorithm described below.

Let W i be a test word in the sentence. If W i has a suffix part it can be stemmed into a root 
word say W s

i . But if  W i is a root word, it cannot be stemmed. Thus,  W s
i may or may not 

exist, depending on the nature of W i . Now, depending on the scores we make the decisions 
described in pseudo-code as follows.

Begin
if Score (W i )= 0

if W s
i exists 

if Score (W s
i ) = 0

declare W i  as real-word error
else

W i is correct
            end if
else

declare W i as real-word error
            end if
else

if W s
i exists

if Score (W s
i ) < 0.01 * Score of Top-ranked element  of confusion set

declare W i as real-word error

else
W i is correct

end if
else

W i is correct
end if

end if
End

The above rules are now illustrated by an example. In a stream of text “... new lodger made 
his appearance ink my modest bachelor quarters, but I was not ...” , the word 'ink' is actually 
a real-word error.
In our approach, the system starts processing one word after another. While processing the 
word 'his', we have the confusion set { his, him, this, is, has }. For each of these words we 
calculate the score the score and arrange it in decreasing order of magnitude, as shown in 
Table 1.

Rank Confusion Word Score

1 his 0.3153

2 him 0.1177

3 this  0.0619
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4 is 0.0044

5 has 4.9629E-4

Table 1: Confusion set for word “his” with score

Since 'his' is on top of the list, the system infers that it is a correct word.
In case of the word 'appearance', we get the following results and it is also declared as a 
correct word. 

Rank Confusion Word Score

1 appearance 0.2256

2 appearances 0.0243

Table 2: Confusion set for word “appearance” with scores

 Now, for the word 'ink' we get the confusion set { in, sink, ink }

Rank Confusion Word Score

1 in 0.4998

2 sink  1.2672E-4

3 ink 0

Table 3: Confusion set for word “ink” with score

However, there is no count of the bigrams 'appearance ink' and 'ink my' as well as no count of 
the trigram 'appearance ink my' in the BYU corpus. So, the score of 'ink' is 0 and hence it is 
declared as real-word error. Since 'in' tops the score, the system considers it as the correct 
suggestion. 
But score zero may not always mean that the word is an error. Sometimes a bigram/trigram 
score may be zero because it is absent in the particular corpus. For example, consider the 
word 'quarters'. From BYU corpus we get

Count (bachelor quarters ) = 0
Count (quarters but ) = 0

Count (bachelor quarters but ) = 0

So we shall get zero score for the word 'quarters' and the system would declare 'quarters' as a  
wrdong word. But in reality 'quarters' is a correct word. So, the system will make an error. In 
order to reduce such incorrect decisions we do a kind of suffix stripping or stemming. In this 
case  if  we  strip  the  plurality  suffix  -s,  we  get  'quarter'.  Now,  the  bigrams  and  trigram 
generated by 'quarter'  are not null  in the corpus and hence the score is also non-zero,  as  
shown in Table 4. Thus we include the stemmed word in the confusion set if the score for the 
test word is zero.
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Rank Confusion Word Score

1 quarter 0.25

2 quarters 0

Table 4: Confusion set for word “quarter” with score

Some of the frequent elements we consider for stemming are given below :

{d, n, r, s, y, ed, es, ly, ies}

Now  we  have  a  word (W i ) decided  as  real-word  error  or  not  along  with  scores  of  the 
members of its confusion set.  If decided as real-word error,  we rank the members of the 
confusion set in descending order as suggestions for correction.

4. Experimental results and discussion

In order to evaluate our approach we collected test data from Project Gutenberg. We chose 
Project Gutenberg because it contains simple text files only, especially with no pictures i.e. 
only stream of text. Our data consists of around 100 files ( approximately 25000 words ) with 
headings removed. 
We simulated real-word error synthetically and subject this erroneous document to our error 
detection and correction system. To make such a corrupted document, one in every 20 words 
is chosen. Suppose this current word is W. Then W is converted into a set of strings by one 
edit operation ( insertion, deletion, substitution) at one character position. If W contains n 
characters then n substitutions, n deletions and n+1 additions will create 3n+1 strings. From 
all the generated strings we find those which are valid words. One of these valid words is  
chosen at random and W is replaced by this word. In this way we introduce 100/20 = 5% 
real-word error in the corpus. Here we have considered real-word error generated by single 
operation like substitution, deletion or insertion. 
While typing people make single position character  mistake in between 60%-80% of the 
erroneous cases [2]. A small portion of that becomes real-word error. Out of the rest 20%-
40% two or more position mistakes, the chance of getting real-word error is even smaller. So, 
single portion mistyping based model can take care of a very high percentage of real-word 
errors. We give this qualitative statement because we did not find any robust statistics of the 
real-word errors presented in the published literature.
The performance of our approach can be evaluated from three aspects. The first one is to 
compute Precision and Recall  of  real-word error  detection.  Let n1 be the  number of  total 
errors, n2  be the be number of  total  detection and n3 be the number of correct  detection. 
Then, 

Precision =
n3

n2

Recall =
n3

n1

While precision gives how precisely the system detects the error, we do not get an estimate 
on relative number of errors made by the system. The number of errors made by the system is 
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(n2 − n3) . However,  n2  can theoretically be equal to the total number of words in the test 
corpus ( say N ). So, we may normalize (n2 − n3) with respect to N and represent it in percent 
as 

Percent of erroneous detection =
(n2−n3 )

N
∗ 100 %

Table 5 shows Precision,  Recall and percentage of erroneous detection.  It  is significantly 
better than [6] though test database is different. 

Detected Real-word Error Erroneous 
DetectionPrecision Recall

71%-79% 81%-88% 1%-2%

Table 5: Evaluation results of Detection by our approach

If words in the sentence are real-word error which have been detected by the system, then the 
relative ranks of correct suggestion generated by the system is shown in chart 1. 

Chart 1 : Evaluation results of ranks of suggestions 

It is noted that top-ranked suggestion is correct in 85% cases. Also, the correct suggestion lie 
in the top two ranks in 85+8 = 93 % cases. This shows that our proposed method can work 
very well by substitutions from our ranked list.

5. Conclusion

A simple but effective real-word error detection and correction approach is proposed here 
that employs  only two bigrams and one trigram around the test word in a sentence. Since it 
works in a small neighbourhood around the test word, possibility of detecting and correcting 
more than one real-word error exist. The overall performance of the system on a moderate 
test  set  is  quite  satisfactory  and  comparable  with  those  of  state  art  correction  systems. 
Evaluation of this method on global databases like Wall Street Journal corpus is a future 
scope of the work. The n-gram database used here is not huge, hence many valid bigrams and 
trigrams are not found in it, thus making the system less accurate. We tried to reduce such 
error by employing the stemming based method. This system may be further strengthened by 
using Word-net, which is our plan for future work. Test of this approach for Indian language 
text is another scope of future study.

85%

8%

7%
Rank 1

Rank 2

Rest
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