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Many people are learning English as a second or foreign language, and there are estimated 
375 million English as a Second Language (ESL) and 750 million English as a Foreign 
Language (EFL) learners around the world according to Graddol (2006). Evidently, 
automatic grammar checkers are much needed to help learners improve their writing. 
However, typical English proofreading tools do not target specifically the most common
errors made by second language learners. The grammar checkers available in popular word 
processors have been developed with a focus on native speaker errors such as subject-verb 
agreement and pronoun reference. Therefore, these word processors (e.g., Microsoft Word) 
often offer little or no help with common errors causing problems for English learners. 

Grammatical Error Detection (GED) for language learners has been an area of active 
research. GED involves pinpointing some words in a given sentence as grammatically 
erroneous and possibly offering correction. Common errors in learners’ writing include 
missing, unnecessary, and misuse of articles, prepositions, noun number, and verb form. 
Recently, the state-of-the-art research on GED has been surveyed by Leacock et al. (2010). 
In our work, we address serial errors in English learners’ writing related to the proposition 
and verb form, an aspect that has not been dealt with in most GED research. We also 
consider the issues of broadening the training data for better coverage, and coping with 
data sparseness when unseen events happen. 

Researchers have looked at grammatical errors related to the most common 
prepositions (e.g., De Felice and Pulman, 2007; Gamon 2010). In the research area of
detecting verb form errors, methods based on template related to parse tree, maximum 
entropy with lexical and POS features have been proposed (e.g., Lee and Seneff, 2006; 
Izumi et al. 2003). 

The Longman Dictionary of Common Errors, second edition (LDOCE) is the result 
of analyzing errors encoded in the Longman Learners’ Corpus. The LDOCE shows that 
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grammatical errors in learners’ writing are mostly isolated, but there are certainly a lot of 
consecutive errors (e.g., the unnecessary preposition “of ” immediately followed by a 
wrong verb form “thinking” in “These machines are destroying our ability of thinking [to 
think].”). We refer to two or more errors appearing consecutively as serial errors. Previous 
work on grammar checkers either focuses on handling one common type of errors 
exclusively, or independently. However, if an error is not isolated, it becomes difficult to 
correct the error when another related error is in the immediate context. In other words, 
when serial errors occur in a sentence, a grammar checker needs to correct the first error in 
the presence of the second error (or vise versa), making correction hard to solve. These 
errors could be corrected more effectively, if the corrector recognized them as serial errors 
and attempt to correct the serial errors at once. 

Consider an error sentence “I have difficulty to understand English.” The correct 
sentence for this should be “I have difficulty in understanding English.” It is hard to 
correct these two errors one by one, since the errors are dependent on each other. 
Intuitively, by identifying “difficulty to understand” as containing serial errors and 
correcting it to “difficulty in understanding,” we can handle this kind of problem more 
effectively. 

We present a new method for correcting serial grammatical errors in a given sentence 
in learners’ writing. In our approach, a statistical machine translation model based on 
trigram containing a word followed by preposition and verb, or infinitive in web-scale 
ngrams data is generated to attempt to translate the input into a grammatical sentence. The 
method involves automatically learning two translation models based on Web-scale 
n-gram (Brants and Franz, 2006). The first model translates trigrams containing serial 
preposition-verb errors into correct ones. The second model is a back-off model, used in 
the case where the trigram is not found in the training data. 

Input: I have difficulty to understand English.    . 
Phrase table of translation model:  

difficulty of understanding ||| difficulty in understanding ||| 1.00 

difficulty to understand ||| difficulty in understanding ||| 1.00 

difficulty with understanding ||| difficulty in understanding ||| 1.00 

difficulty in understand ||| difficulty in understanding ||| 1.00 

difficulty for understanding ||| difficulty in understanding ||| 1.00 

difficulty about understanding ||| difficulty in understanding ||| 1.00 

Back-off translation model: 

difficulty of VERB+ing ||| difficulty in VERB+ing ||| 0.80 

difficulty to VERB ||| difficulty in VERB+ing ||| 1.00 

difficulty with VERB+ing ||| difficulty in VERB+ing ||| 1.00 

difficulty in VERB ||| difficulty in VERB+ing ||| 1.00 

difficulty for VERB+ing ||| difficulty in VERB+ing ||| 1.00 

difficulty about VERB+ing ||| difficulty in VERB+ing ||| 1.00 

Output: I have difficulty in understanding English. 

Figure 1. Example system translates the sentence “I have difficulty to understand English.” 
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At run-time, our system will generate multiple possible trigram by changing word’s 

preposition and verb form in the original trigram. Example trigrams generated for 

“difficulty to understand” are shown in Figure 1. The system will then rank all these 

generated sentences and use the highest ranked sentence as suggestion. 

To conclude, we have introduced a new method for correcting serial errors in a given 
sentence in learners’ writing. In our approach, a statistical machine translation model is 
generated to attempt to translate the given sentence into a grammatical sentence. The 
method involves automatically learning two translation models based on Web-scale 
n-gram. Evaluation on a set of sentences in a learner corpus shows that the proposed 
method corrects serial errors reasonably well with a precision of 0.68, recall 0.33 and 
F-score 0.45. Our methodology exploits the state of the arts in machine translation to
develop a system that can effectively deal with serial errors or many error types at the 
same time. 
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