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Abstract 

Data acquisition is a major concern in text classification. The excessive human efforts 

required by conventional methods to build up quality training collection might not always be 

available to research workers. In this paper, we look into possibilities to automatically collect 

training data by sampling the Web with a set of given class names. The basic idea is to 

populate appropriate keywords and submit them as queries to search engines for acquiring 

training data. Two methods are presented in this study: One method is based on sampling the 

common concepts among the classes, and the other based on sampling the discriminative 

concepts for each class. A series of experiments were carried out independently on two 

different datasets, and the result shows that the proposed methods significantly improve 

classifier performance even without using manually labeled training data. Our strategy for 
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retrieving Web samples, we find that, is substantially helpful in conventional document 

classification in terms of accuracy and efficiency. 

Keywords: Unsupervised classification, text classification, Web mining 

 

1. Introduction 

Document classification has been extensively studied in the fields of data mining and 

machine learning. Conventionally, document classification is a supervised learning task [1, 2] 

in which adequately labeled documents should be given so that various classification models, 

i.e., classifiers, can be learned accordingly. However, such requirement for supervised text 

classification has its limitations in practice. First, the cost to manually label sufficient amount 

of training documents can be high. Secondly, the quality of labor works is suspicious, 

especially when one is unfamiliar with the topics of given classes. Thirdly, in certain 

applications, such as email spam filtering, prototypes for documents considered as spam 

might change over time, and the need to access the dynamic training corpora 

specifically-tailored for this kind of application emerges. Automatic methods for data 

acquisition, therefore, can be very important in real-world classification work and require 

further exploration. 

 

Previous works on automatic acquisition of training sets can be divided in two types. One of 

which focused on augmenting a small number of labeled training documents with a large pool 

of unlabeled documents. The key idea from these works is to train an initial classifier to label 

the unlabeled documents and uses the newly-labeled data to retrain the classifier iteratively. 

Although classifying unlabeled data is efficient, human effort is still involved in the 

beginning of the training process. 

 

The other type of work focused on collecting training data from the Web. As more data is 

being put on the Web every day, there is a great potential to exploit the Web and devise 

algorithms that automatically fetch effective training data for diverse topics. A major 

challenge for Web-based methods is the way to locate quality training data by sending 

effective queries, e.g., class names, to search engines. This type of works can be found in [3, 

4, 5, 6], which present an approach that assumes the search results initially returned from a 

class name are relevant to the class. Then the search results are treated as auto-labeled and 

additional associated terms with the class names are extracted from the labeled data. By 

sending the class names together with the associated terms, appropriate training documents 

can be retrieved automatically. Although generating queries is more convenient than 

manually collecting training data, the quality of the initial search results may not always be 

good especially when the given classes have multiple concepts. For example, the concepts of 

class “Apple” include company and fruit. Such a problem can be observed widely in various 

applications. 

 

The goal of this paper is, given a set of concept classes, to automatically acquire training 

corpus based merely on the names of the given classes. Similar to our previous attempts, we 
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employ a technique to produce keywords by expanding the concepts encompassed in the 

class names, query the search engines, and use the returned snippets as training instances in 

the subsequent classification tasks. Two issues may arise with this technique. First, the given 

class names are usually very short and ambiguous, making search results less relevant to the 

classes. Secondly, the expanded keywords generated from different classes may be very close 

to each other so that the corresponding search-result snippets have little discrimination power 

to distinguish one class from the others. 

 

We present two concept expansion methods to deal with these problems, respectively. The 

first method, expansion by common concepts, aims at alleviating the problem of ambiguous 

class names. The method utilizes the relations among the classes to discover their common 

concepts. For example, “company” could be one of the common concepts of classes “Apple” 

and “Microsoft”. Combined with the common concepts, relevant training documents to the 

given classes can be retrieved. The second method, expansion by discriminative concepts, 

aims at finding discriminative concepts among the given classes. For example, “iPod” could 

be one of the unique concepts of class “Apple”. Combined with the discriminative concepts, 

effective training documents that distinguish one class from another can be retrieved. 

 

Our methods are tested under two different experimental setups, the CS papers and Web 

pages classification tasks. The proposed methods are effective in retrieving quality training 

data by querying search engines. Moreover, the result shows that the obtained Web training 

data and manually labeled training data are complementary. Our methods can significantly 

improve classification accuracy when only a few manually labeled training data is available. 

Contribution of our work can be addressed as follows. We propose an automatic way to 

sample the Web and collect the training data with good quality. Apart from the previous work, 

our methods are fully automatic, reliable, and robust, and achieve an 81% accuracy in text 

classification tasks. With a little help from a small number of labeled data added into the 

scene, the classification accuracy can be as high up to 90%. Several experiment results are 

also revealed to help investigation and realization of automatic Web sampling methods, in 

which the difficulties encountered are presented in detail. 

 

The sections are organized as follows. In Sections 2 and 3, we present our basic idea and the 

two methodologies, respectively. The experiments are introduced in Section 4. In Section 5, 

we discuss the related work of this paper. Finally, in Section 6, we give out discussions and 

conclusions. 

 

2. The Basic Idea 

Suppose that we are given a set of classes C=(c1, c2, …, cn), where ci is the name of the i-th 

class. We plan to generate keywords based on classes C, form a few queries and send them 

off to search engines so as to collect training instances. Our methods presented in this paper 

are independent of classification models; that is, any model can be incorporated with our 

methods. 
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To carefully examine the possibility of querying search engines for acquiring training data, 

we did an evaluation with different search engines, search-result types (snippet or document), 

and the number of search results. 5 CS-related classes were taken into account, including 

“Architecture”, “IR”, “Network”, “Programming”, and “Theory”. Each class name ci was 

sent to 3 search engines, including Google
1
, Yahoo!

2
, and Live Search

3
. Top 100 snippets 

were extracted as training data. We also gathered the research papers from the corresponding 

conferences to the 5 classes as the testing documents. Table 1 shows the performance of 

different search engines. Querying by the class names can achieve classification accuracy at a 

range from 0.35 to 0.56. More specifically, the three search engines perform well in 

“Programming” and “Theory” but poorly in the others on average. This arises from the fact 

that irrelevant documents may be located for those classes with ambiguous names. The way 

to query by the class names is not reliable due to the ambiguity of the class names (the first 

challenge). For example, the word “architecture” is widely used in CS, art and construction. 

From the results, we select Google as our backend search engine in this paper. 

 

We further explore if the classification performance can be improved by downloading Web 

pages for training. The result is shown in Table 2. It reveals that Web pages might introduce 

more noises than snippets do, while the snippets summarize Web pages and capture the 

concepts of classes C by their context. Moreover, to download Web pages is time-consuming. 

Our methods, therefore, only retrieve snippets as the training source. 

Table 1. Accuracy of different search engines for classification of CS papers. 

Engine Architecture IR Network Programming Theory Avg. 

Google 0.075 0.382 0.899 0.723 0.762 0.568 

Yahoo! 0.112 0.022 0.094 0.863 0.665 0.351 

Live Search 0.269 0.006 0.083 0.784 0.815 0.391 

 

Intuitively, collecting more snippets or documents might enhance the performance. Table 3 

shows the results of changing training data sizes from 100 to 900. It could be found that 

classification accuracy does not increase obviously when the numbers of snippets and 

documents reach 200 and 300, respectively. This is because much relevant information can 

be retrieved in top ranked search results returned by the search engine. Noises are 

unavoidably included from longer lists. Hence, simply fetching a large amount of snippets or 

documents from a single search result cannot achieve satisfactory performance. Even if we 

expand the queries, i.e., the class names, using pseudo-relevance feedback (PRF) [7, 8, 9], the 

improvement is still minor since the generated expanded keywords cannot effectively 

discriminate different classes (our second challenge). The performance comparison between 

our methods and PRF will be given in Section 4.2. 

 

                                                
1 The Google search engine: http://www.google.com/search 
2 The Yahoo! search engine: http://search.yahoo.com/search 
3 The MSN Live search engine: http://search.live.com/ 
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To collect good training corpora and help classifiers learn more quickly (querying search 

engines is costly), two methods are proposed in this paper. The first method, expansion by 

common concepts, aims at alleviating the ambiguity problem. Generally, a short class name 

easily conveys multiple meanings. For example, class “Apple” may be a fruit or company 

name. We find that class ci is context-aware if its context C - {ci} provides relevant 

information to ci. For example, if “Apple” and “Microsoft” are put together, “Apple” would 

be a company. If we are given “apple” and “banana”, “apple” could refer to a fruit. Our first 

method, which will be described in Section 3.1, is trying to discover such common concepts 

among classes C, i.e., “company” and “fruit”, from the Web, and use them as constraints to 

expand our original queries C. 

Table 2. Accuracy of different training types in CS papers classification. 

Source Architecture IR Network Programming Theory Avg. 

Snippet 0.075 0.382 0.899 0.723 0.762 0.568 

Documents 0.272 0.049 0.689 0.505 0.783 0.459 

Table 3. Average accuracy of different training sizes in CS papers classification. 

# of docs 100 200 300 400 500 600 700 800 900 

Snippets 0.568 0.601 0.603 0.601 0.608 0.603 0.604 0.604 0.604 

Documents 0.460 0.463 0.507 0.500 0.503 0.504 0.507 0.507 0.508 

 

Common concepts can help us collect more relevant documents to each class but cannot 

discriminate one class from the others. The latter becomes important because classification is 

inherently to distinguish different classes. Our second method is focused on the finding of 

discriminative concepts among classes C. Consider previous example. “PowerPoint” and 

“iPod” are possible discriminative concepts because “PowerPoint” is only relevant to 

“Microsoft” while “iPod” is only about “Apple”. Different from PRF, our second method, 

expansion by discriminative concepts, which will be described in Section 3.2, aims at 

acquiring Web training data not only relevant to each class but also effectively distinguishing 

one class from another. 

 

3. The Proposed Methods 

In this section, we will describe the two training data acquiring methods, sampling the Web 

by common concepts expansion and discriminative concepts expansion, respectively. 

 

3.1 Expansion by Common Concepts 

The goal of our first method is to collect training data via sampling the Web by discovering 

the common concepts between given classes C. Expanding class names C by their common 

concepts is helpful in obtaining more suitable training data from search engines. An intuitive 

way to discover the concepts is to find common concepts from well-known topic hierarchies 

on the Web such as Open Directory Project
4
 (DMOZ), which is one of the largest and 

comprehensive human-edited directories. To obtain common concepts, we first search 

                                                
4 DMOZ Open Directory Project: http://www.dmoz.org/ 
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DMOZ by each class name ci and get a set of the nodes relevant to ci in the DMOZ directory. 

Suppose the set of the nodes is N(ci). The least common ancestors (LCA) of all of the nodes 

N(ci) (i=1…n) are viewed as the common concepts of C. The LCAs are the shared ancestors 

of N(ci) (i=1…n) located farthest from the roots of the DMOZ directory. For example, by 

searching class “Architecture”, we get the path “Arts: Architecture” and “Computers: 

Emulators: Intel x86 Architecture”. When search the class “Programming”, we find it has the 

same common concept of “Computers” (from “Computers: Programming”) with 

“Architecture”. Thus the concept “Computers” would be the common concepts between the 

two classes “Architecture” and “Programming”. 

 

Although Open Directory Project covers diverse topics and is very precise, sometimes we 

might get few or even no common concepts among C. The problem is serious for those 

classes not so popular such as names of person or organizations. For example, if we query the 

class “Cornell”, we only get 5 paths for the class, which contains few candidates of concepts 

to select and expand. To deal with this problem, we extract terms co-occurring with each 

class ci in Web pages, cluster the terms, and treat the representative term for each class as one 

of the common concepts. More specifically, all of the classes {c1, c2, … , cn}C are 

combined into one query “c1 + c2 + … + cn”, and then submitted to a search engine. After 

stemming and removing stopwords, we extract 20 high-frequency terms as candidates for 

common concepts from top 100 snippets returned from the search engine. To group these 

candidates, we send them separately to the search engine and generate corresponding feature 

vectors based on their top 100 snippets. Uni- and bi-grams are adopted as feature terms and 

TF-IDF is used to calculate feature weights. Next, a graph G = (V, E) is constructed, where v

V represents one candidate term, and eE is the cosine similarity between two feature 

vectors. Finally, we perform the star clustering algorithm [10] to choose the star centers, 

which are the common concepts among C. 

 

In this paper, we adopt both of LCAs from DMOZ and co-occurring terms from Web pages 

as our common concepts among C. After common concepts generated, we can either use it to 

sample the Web and acquire good training data, or utilize them while discriminative concepts 

are generating. 

 

3.2 Expansion by Discriminative Concepts 

A discriminative concept is a concept that can help distinguish one certain concept class of 

interest (say, c) from all the classes (c'≠c). Such a concept contributes more relevance to one 

specific class than to the others. Unlike common concepts, which are shared by all the 

concept classes in C, any discriminative concept has a specific concept class to contribute 

relevance to, called the host. Let fc be the feature vector of concept class c. Let the similarity 

between any two concepts x and y be denoted asσ x,y = cos(fx, fy). An ideal discriminative 

concept k for concept c must satisfy all the following constraints: 

 

1. Concept k should exhibit high similarity to its host c. 
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2. The similarity between k and c should be significantly greater than that between k and any 

one of the other concept classes. 

 

These constraints loosely define the criteria that we can use to discover discriminative 

concepts, and they also rule out the possibility that a concept k has two or more hosts. Based 

on the second constraint, a plausible decision criteria for discriminative concept is given 

below. Let κc  denote the set of all discriminative concepts hosted by concept class c. We 

have: 

k ∈ κ ⟺
σc,k

σc ′ ,k
> 𝜃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐′ ≠ 𝑐 

In the criteria, the right-hand side equation needs to be satisfied for all other concept classes 

c'; in other words, we have a multiple-constraint-satisfaction problem. For every 

concept-class pair (c, c'), the ratio σ c,k /σ c',k describes the degree of deviation in similarities 

exhibited by k toward both classes. When the value is greater than 1, we say that c is more 

likely to be the host; when it lies between 0 and 1, we say that c' is more likely. The 

parameterθ determines the tightness of the decision boundary. Since we expect higher 

similarity between k and c than that between k and other c's, it would normally be defined as 

a value greater than 1. 

 

Generally, fixed boundary value is easier to train and suitable for general cases, while we also 

find that this type of setup can cause problems in extreme cases. Suppose we have two 

classes c1 and c2 which are relevant topics or extraordinarily similar to each other (in terms of 

the similarity between their feature vectors). The number of discriminative concepts for either 

c1 or c2 may drastically decrease because, for most k's, deviation in similarities toward both 

classes becomes even more subtle and harder to detect by using a simple constantθ . An 

obvious solution to this problem, we find, is to adopt a function in place of the constantθ , 

that assigns high threshold value for general cases and low threshold value for the 

aforementioned extreme cases. In real practice, we use a very simple form of decision criteria 

to identify discriminative concepts: 

k ∈ κ ⟺
σc,k

σc ′ ,k
> 𝛿(1 − σc,c ′ ) for all c′ ≠ c 

whereδ is the discrimination coefficient. With the new criteria, a number of 5 to 40 

discriminative concepts (for each class) can still be discovered even when any two concept 

classes exhibit high class-to-class similarity to each other. 

 

The next step is to apply this technique to each concept class in C so as to populate new 

training instances from the Web. Let SRc be the set of search-result snippets obtained by 

sending concept c as a query to the search engine. Assume that the training set for concept 

class c before and after the expansion is denoted as Dc and D'c, respectively. Given κc , we 

can form a set of new queries by concatenating c with each kκc ,, send them off to the 

search engine, and obtain a new set of training instances, i.e., { SRc∪kκc  | kκc}. In 

formalism, we have: 

D′
c = Dc ∪k∈κc

SRc∪k 
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This procedure can be repeated several times for each class so that the total number of 

discovered training instances can reach our expectation. However, certain changes on 

definitions and notations required by the adaptation needs to be clarified in advance. First, we 

can no longer expect that the feature vector for a concept class c remains the same throughout 

multiple iterations. In each iteration, when new training instances added to the collection, 

feature vectors for c actually changes. Next, the set of discriminative concepts 𝜅𝑐  discovered 

in each iteration would vary, as similarity measure suffers from the change as well. Certain 

modification in definitions should be taken care of so as to seamlessly fit the aforementioned 

criteria into the framework, while treating notations for a concept and for a concept class 

differently might clutter up the framework. For simplicity, no explicit treatment will be done 

to the equations in the following text. Readers should take caution that, when 

class-to-concept or class-to-class similarity computation is considered in discussions, the 

feature vector referred to a concept class is in fact derived from its current training set (rather 

than SRc). On the other hand, we will use 𝜅𝑐
(i)

 in place of plain 𝜅𝑐  in the rest of the work. 

 

Assume that the algorithm repeats t times. The initial training data for concept class c is 

denoted as Dc
(0)

, and in each iteration i [1,t], a new training set for c is produced and 

represented by Dc
(i)

. Consider a simple framework as follows. For all cC, we have: 

Dc
 0 = SRc                                                  

Dc
(i) = Dc

(i) ∪k∈κc
(i) SRc∪k , i > 0 

where Dc
(i)

 and 𝜅𝑐
(i)

 is the set of training instances and the set of discovered discriminative 

concepts, respectively, for concept class c at iteration i. Eventually, the algorithm stops after 

the t-th iteration. The content of Dc
(t)

 will serve as the final training data for all concept class 

c. 

 

Since practically it is infeasible to populate the entire set of κc , several heuristics are 

involved in creation of the set: 1) We look for terms with high discrimination power 

(specifically, unigram and bigrams) in the context of D
(i-1)

 using commonly-used 

information-theoretic measures, such as information gain and inverse document-frequency. 

These candidates are then examined with the decision criteria and disqualified ones are 

discarded immediately; 2) candidates that survived the test are ranked accordingly by the 

score function, which is a simple rewrite of the criteria that indicates the average degree of 

deviation for the candidate k: 

1

 c − 1
  

σc,k

σc ′,k
− δ(1 − σc,c ′) 

c ′≠c

 

The summands will not cancel out since the score is calculated for the candidates satisfying 

the criteria. Generally, testing all the candidate terms may result in an extremely inefficient 

procedure. In practice, we set up a strict threshold on the information gain and idf in light of 

reducing the number of candidates. We test only the top m concepts selected by the filter in 

the end. The value m is set to be 15 throughout the work. 

 

 

60



4. Experiments 

We evaluate our performance in CS papers and Web pages classification. 

 

4.1 Experimental Setup 

We conduct experiments on two datasets. First is a set of papers from several CS-related 

conferences, and there are five classes used for training, including “Architecture”, “IR”, 

“Network”, “Programming”, and “Theory”, as shown in Table 4. For the paper dataset, there 

are about 500 papers in each class. Another dataset is the Web pages collected from four 

universities, and can be downloaded from the WebKB project
5
. The classes for these 

universities include “Cornell”, “Texas”, “Washington”, and “Wisconsin”. As the original 

dataset for Web pages is imbalanced, we randomly choose 827 Web pages (i.e. the minimum 

size of original data among the 4 classes) for classification. Please note that the two datasets 

are our testing data since the training data are fully collected from the Web. Moreover, the 

two datasets are quite different in document length and quality. The papers are often longer, 

well written, and with much useful information about the CS-related classes, while the Web 

pages might cover more noises and shorter contents. 

 

Our first method of expansion by common concepts is denoted as CM; the second method of 

expansion by discriminative concepts is denoted as DM; CM+DM is the combination of both 

methods, where CM is applied first so that search results could be more relevant, and then 

DM is used to extract discriminative concepts from the relevant search results. With the 

common concepts extracted from CM, we can use these concepts plus the class name as a 

whole query and perform DM to iteratively collect the discriminative concepts. 

Table 4. The information about the dataset of CS papers for classification. 

Class # papers From Conferences 

Architecture 490 SIGARCH(04-08), DAC(00-07) 

IR 484 SIGIR(02-07), CIKM(02-07) 

Network 446 SIGCOMM(02-08), IPSN(04-07), MOBICOM(03-07), 

MOBIHOC(00-07), IMC(01-07) 

Programming 505 POPL(02-08), PLDI(00-07), ICFP(02-07), OOPSLA(00-07) 

Theory 471 SODA(01-08), STOC(00-07) 

 

To compare our performance with the state-of-the-art Web-based method, LiveClassifier [3], 

denoted as LC, has been implemented, where the concepts hierarchy are referred from 

DMOZ. For the CS-related classes, these concepts are “computers”, “reference”, “business”, 

“software”, and “science”; and for the classes of four universities, the concepts are “society”, 

“people”, “university”, “school”, “education”, “sports”, “United States”. The thresholds δ  

and t used in DM are set to 0.85 and 7 in both dataset, respectively. We use the Rainbow tool
6
 

and the VSM (Vector Space Model) classification model for all the experiments. 

 

                                                
5 The WebKB project: http://www.cs.cmu.edu/~WebKB/ 
6 The Rainbow tool: http://www.cs.cmu.edu/~mccallum/bow/rainbow/ 

61



4.2 Text Classification 

Table 5 compares the classification accuracy between different methods. For each class, the 

baseline method is to use only the class name as query, submit to the search engine, and 

collect snippets as training data. The method from query expansion (QE) is to use 

pseudo-relevance feedback (PRF) for each class, where the terms with high TF-IDF values in 

the snippets are selected as expansion terms which used for acquiring training data. LC is the 

method implemented based on LiveClassifier [3]. With the concept hierarchy of each class, 

all the concepts are used to combine with the class name as a query, then submit to the search 

engine and collect the snippets as training data. 

 

From Table 5, we find that merely sending class names as queries cannot retrieve quality 

training data. It only achieves the accuracy at 0.57 on average. Even if we expand the class 

names with PRF (the method of QE), the accuracy cannot be improved by QE in this case. 

This is because PRF is a general solution to the keyword mismatching problem and thus 

would not be well applied to our classification problem. LC manually labels some concepts 

of the class names, e.g., the concept of “Architecture” is about computer architecture, so that 

more relevant training data to original classes can be fetched. LC gets higher accuracy at 

about 0.71. But such concepts labeled by people are often few. Our CM method can discover 

more useful common concepts, as shown in Table 6, where keywords “computers”, 

“conference”, and “proceeding” are all helpful in searching relevant data for each class when 

combined with original class name. CM, on the other hand, might introduce noisy keywords 

often co-occurring with the class names such as keyword “web”. Due to the assistance of 

more common concepts, we collect more quality training data by CM. The accuracy for CM 

comes to 0.76, which is much better than LC and QE. 

 

In addition, we observe that the performance for class “Network” is originally high in 

baseline method. To realize what makes the result, we check the process for getting training 

data in advance. Except for the accurate semantic for the term “Network”, we discover that 

the snippets from search engine are suitable and with good quality for the class “Network”. 

This is related to the characteristic of the Web. To our experience, the documents ranked from 

search engines might be mostly relevant to the fields about computer or network. 

 

The results of Web pages classifications, as shown in Table 7, are similar to previous 

experimental results except the average accuracy obtained here is lower in general due to the 

noisy Web pages that are unreliable for testing. Moreover, sometimes the concepts derived 

from the Web are not effective in classification (even they are correct). For example, from the 

Web, DM learns two discriminative concepts of “ut” and “milwaukee” for classes “Texas” 

and “Wisconsin”, respectively. But their impacts on classifying our testing data are futile. 

Although there are some noises in the Web page dataset and the concepts found are correct 

but less useful, CM+DM does an improvement while training by the snippets from these 

concepts, and surpasses the performance of LiveClassifier (LC). By our methods, the quality 

training data are fetched and the classifier learns better, thus become more robust for text 

classification. 

62



Table 5. Accuracy of classification in CS papers. 

Baseline: Class Names, QE: Query Expansion, LC:LiveClassifier,  

CM: Common concept method, and DM: Discriminative concept method. 

Method Architecture IR Network Programming Theory Avg. 

Baseline 0.76 0.38 0.90 0.72 0.76 0.57 

QE 0.03 0.01 0.98 0.71 0.66 0.48 

LC 0.88 0.42 0.82 0.54 0.89 0.71 

CM 0.80 0.77 0.89 0.56 0.76 0.76 

DM 0.04 0.00 0.83 0.66 0.98 0.50 

CM+DM 0.76 0.86 0.91 0.71 0.82 0.81 

Table 6. Extracted common concepts and discriminative concepts of CS classes. 

Method Architecture IR Network Programming Theory 

CM By DMOZ: computers  By Star Algorithm: conference, proceeding, web 

DM architecture, 

architectural, 

architects, arts, 

history, 

contemporary, 

design 

infrared, 

satellite, 

visible, image,  

weather, 

thermal, 

cameras 

usa, health, 

action, 

sports, food, 

monitor, 

global 

tutorial, java, 

example, 

using, 

oriented, 

download, 

linux 

graph, 

mathematical, 

problems, 

literary studies, 

political, 

number, 

CM+DM isca, energy, 

oriented, 

adaptive, 

aidede, ecaade, 

architectural 

investor, 

infrafed, 

retrieval, ecir, 

trec, sigir, ie 

development

, wireless, 

shows, 

server, first, 

email ,mail 

ferment, 

oriented, 

programmers, 

final, siggraph, 

graphics, 

animation 

Number, 

university, 

critical, math, 

computational, 

theoretical, 

complexity 

Table 7. Accuracy of classification in Web pages. 

Baseline: Class Names, QE: Query Expansion, LC:LiveClassifier,  

CM: Common concept method, and DM: Discriminative concept method. 

Method Cornell Texas Washington Wisconsin Avg. 

Baseline 0.85 0.47 0.68 0.20 0.55 

QE 0.87 0.40 0.71 0.41 0.60 

LC 0.99 0.14 0.58 0.14 0.46 

CM 0.99 0.30 0.72 0.33 0.59 

DM 0.47 0.75 0.53 0.66 0.60 

CM+DM 0.98 0.43 0.77 0.37 0.64 

 

4.3 Combination of Web Training Data for Text Classification 

In this experiment, we want to realize how our methods help conventional supervised text 

classification. We further conduct an experiment to compare the performance between labeled 

data plus training data from the Web and the labeled data only. 
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Both datasets are divided into training and testing data. We combine the training data 

collected from the Web and sample α  % of the training data as a new training corpus. For 

comparison, we also train a classifier with just those α  % of the labeled data only. The α  

value varies from 1 to 100. α  =100 means to use all the labeled data from original divided 

training set, thus become a supervised learning. 5-fold cross validation is used to evaluate the 

classification accuracy. 

 

Figure 1 and 2 show the two experimental results, respectively. We find that the Web corpus 

improves the classifier’s accuracy more than 6% when α is small for both datasets. In other 

words, when the labeled data is insufficient or even with no quality, sampling training data 

from the Web could substantially complements the manually-labeled data. The performance 

of both classifiers increases when more labeled data are included. However, when more and 

more manually-labeled data is given, the improvement by the Web becomes less obvious or 

even slightly worse. This is because once we add more data from the Web, we also introduce 

the noises such that the accuracy glows slowly when the quality documents are enough. In CS 

papers classification, the performance reaches as higher as all training data used when 50% 

labeled data is added. For Web pages classification, we have the same performance as 

supervised learning when only use 20% labeled data. The performance even exceeds the 

result from supervised learning when 40% labeled data is joined. It explains more quality 

data from the Web is helpful in classification. This result also shows that using all the labeled 

data is not always as good as expected because some of the labeled data are not in good 

quality. 

  
Fig. 1. Accuracy of training data from the Web plus % 

labeled data for CS papers classification. 

Fig. 2. Accuracy of training data from the Web plus % 

labeled data for Web pages classification. 

This experiment shows us that the training data from the Web does help to improve the text 

classification. Moreover, we could use a very few number of labeled data, plus the Web 

corpus our methods collect, to train a desirable classifier. The Web helps the classifiers to 

learn the unseen concepts which do not exist due to the insufficiency or the unreliable quality 

of labeled data. It also tells us that the suitable training data might change by time, thus the 

original labeled data performs worse in new classification tasks. From the result, we believe 

that our methods can benefit the task of text classification, and other advanced applications. 
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5. Related Work 

Text classification has been extensively studied for a long time in many research fields. 

Conventionally, supervised learning is usually applied in text classification [1, 2]. Our work 

focuses on the problem of how to adequately acquire and label documents automatically for 

classification models. 

 

For the problem of automatic acquiring training data, previous studies discuss in two 

directions. One is focused on augmenting a small number of labeled training documents with 

a large pool of unlabeled documents [11, 12, 13, 14, 15, 16, 17, 18]. Such work trains an 

initial classifier to label the unlabeled documents and uses the newly-labeled data to retrain 

the classifier iteratively. [11] proposed by Nigam et al. use the EM clustering algorithm and 

the naive Bayes classifier to learn from labeled and unlabeled documents simultaneously. [12, 

13] proposed by Yu et al. efficiently computes an accurate classification boundary of a class 

from positive and unlabeled data. In [15], Li et al. use positive and unlabeled data to train a 

classifier and solve the lack of labeled negative documents problem. Fung et al. in [17] study 

the problem of building a text classifier using positive examples and unlabeled example while 

the unlabeled examples are mixed with both positive and negative examples. [14] proposed 

by Nigam et al. starts from a small number of labeled data and employs a bootstrapping 

method to label the rest data, and then retrain the classifier. In [18], Shen et al. propose a 

method to use the n-multigram model to help the automatic text classification task. This 

model could automatically discover the latent semantic sequences contained in the document 

set of each category. Yu et al. in [16] present a framework, called positive example based 

learning (PEBL), for Web page classification which eliminates the need for manually 

collecting negative training examples in preprocessing. Although classifying unlabeled data 

is efficient, human effort is still involved in the beginning of the training process. In this 

paper, we propose an acquiring process of training data from the Web, which is fully 

automatic. The method trains a classifier well for document classification without labeled 

data, which is the mainly different part from the previous work. Moreover, our experiments 

show that the Web can help the conventional text classification. The training data acquired 

from the Web expand the coverage of classifier, which substantially enhance the performance 

while there is a lack of labeled data, or the quality of labeled data is not well enough. 

 

Another direction is focused on gathering training data by the Web [3, 4, 5, 6]. In [3], Huang 

et al. propose a system, called “LiveClassifier”, which combines relevant class names as 

queries based on a user-defined topic hierarchy so that more relevant documents to the 

classes could be found from the Web. [4, 5, 6] proposed by Hung et al. presents an approach 

that assumes the search results initially returned from a class name are relevant to the class. 

These search results are treated as auto-labeled and additional associated terms with the class 

names are extracted from the labeled data. Although the previous works are similar to our 

methods, all of them are human-intervened. In this paper, we propose a method which 

automatically finds the associated concepts for the related classes and train a desirable 

classifier. The main contribution is that our method utilizes the relationship of classes and 

samples the Web in an automatic way for key concepts of each class, thus further find the 
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quality training data from the Web. Without labeled data and associated terms given by 

human, our methods perform well and classify documents accurately for the text 

classification problem. 

 

6. Discussions and Conclusions 

In this paper, we propose two methods to automatically sample the Web and find quality 

training data for text classification. We first examine the effects of different search engines, 

retrieved data types, and sizes of retrieved data. Moreover, from the subset of documents and 

the method by associated terms, we know that sampling the Web for concepts of classes and 

fetching training data can substantially improve the performance of classification. It might be 

hard to distinguish the classes with the ambiguity and close relationship without labeled data. 

By the discovering of common concepts and discriminative concepts, the ambiguity of class 

names is eliminated and more relevant concepts are utilized for sampling suitable and quality 

training data from the Web. Several experiments conducted in this work show that our 

methods are useful and robust for classifying documents and Web pages. Furthermore, our 

experiments show that the training data sampled from the Web helps the conventional 

supervised classification, which need quality and labeled data. The result demonstrates that 

the quality of labeled data might not always desirable due to the lack of useful key concepts, 

and we can provide proper training data from the Web to further improve the results of text 

classification. In additions, two dataset with different characteristics are used for our 

experiments and the analysis from different dataset is carefully conducted in this paper. 

Compared to previous works, the advantage of our methods is the fully automatic processes 

during the concepts expansion and the training data collecting. Our methods are independent 

of classification models, thus existing models can be incorporated with the proposed 

methods. 

 

However, our work has some limitations. The classes we choose are related to each other. In 

other words, the performance would be better while the classes are in the same level in the 

hierarchy of topic classes. With the relationships between the classes, our methods can 

perform the context-aware technique among the classes to acquire more relevant documents, 

making the classifiers robust. To go a step further, there are more challenges to choose the 

quality documents in the training corpus sampled from the Web. We can also sample good 

training documents while a pool of unlabeled data is provided. We believe that these 

challenges are worth studied and would be the research directions in our future work. 
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