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Abstract 

This paper mainly addresses the problem of determining voice activity in presence of noise, 

especially in a dynamically varying background noise. The proposed voice activity detection 

algorithm is based on structure of three-layer wavelet decomposition. Appling 

auto-correlation function into each subband exploits the fact that intensity of periodicity is 

more significant in sub-band domain than that in full-band domain. In addition, Teager 

energy operator (TEO) is used to eliminate the noise components from the wavelet 

coefficients on each subband. Experimental results show that the proposed wavelet-based 

algorithm is prior to others and can work in a dynamically varying background noise. 
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energy operator 

 

1. Introduction 

Voice activity detection (VAD) refers to the ability of distinguishing speech from noise and is 

an integral part of a variety of speech communication systems, such as speech coding, speech 

recognition, hand-free telephony, and echo cancellation. Although the existed VAD 

algorithms performed reliably, their feature parameters are almost depended on the energy 

level and sensitive to noisy environments [1-4]. So far, a wavelet-based VAD is rather less 

discussed although wavelet analysis is much suitable for speech property. S.H. Chen et al. [5] 

shown that the proposed VAD is based on wavelet transform and has an excellent 

performance. In fact, their approach is not suitable for practical application such as 

variable-level of noise conditions. Besides, a great computing time is needed for 

accomplishing wavelet reconstruction to decide whether is speech-active or not.  



Compared with Chen's VAD approach, the proposed decision of VAD only depends on 

three-layer wavelet decomposition. This approach does not need any computing time to waste 

the wavelet reconstruction. In addition, the four non-uniform subbands are generated from the 

wavelet-based approach and the well-known "auto-correlaction function (ACF)" is adopted to 

detect the periodicity of subband. We refer the ACF defined in subband domain as subband 

auto-correlation function (SACF). Due to that periodic property is mainly focused on low 

frequency bands, so we let the low frequency bands have high resolution to enhance the 

periodic property by decomposing only low band on each layer. In addition to the SACF, 

enclosed herein the Teager energy operator (TEO) is regarded as a pre-processor for SACF. 

The TEO is a powerful nonlinear operator and has been successfully used in various speech 

processing applications [6-7]. F. Jabloun et al. [8] displayed that TEO can suppress the car 

engine noise and be easily implemented through time domain in Mel-scale subband. The later 

experimental result will prove that the TEO can further enhance the detection of subband 

periodicity.  

To accurately count the intensity of periodicity from the envelope of the SACF, the 

Mean-Delta (MD) method [9] is utilized on each subband. The MD-based feature parameter 

has been presented for the robust development of VAD, but is not performed well in the 

non-stationary noise shown in the followings. Eventually, summing up the four values of 

MDSACF (Mean-Delta of Subband Auto-Correlation Function, a new feature parameter 

called "speech activity envelope (SAE)" is further proposed. Experimental results show that 

the envelope of the new SAE parameter can point out the boundary of speech activity under 

the poor SNR conditions and it is also insensitive to variable-level of noise.  

This paper is organized as follows. Section 2 describes the concept of discrete wavelet 

transform (DWT) and shows the used structure of three-layer wavelet decomposition. Section 

3 introductions the derivation of Teager energy operator (TEO) and displays the efficiency of 

subband noise suppression. Section 4 describes the proposed feature parameter, and the block 

diagram of proposed wavelet-based VAD algorithm is outlined in Section 5. Section 6 

evaluates the performance of the algorithm and compare to other two wavelet-based VAD 

algorithm and ITU-T G.729B VAD. Finally, Section 7 discusses the conclusions of 

experimental results. 

 



2. Wavelet transform 

The wavelet transform (WT) is based on a time-frequency signal analysis. The wavelet 

analysis represents a windowing technique with variable-sized regions. It allows the use of 

long time intervals where we want more precise low-frequency information, and shorter 

regions where we want high-frequency information. It is well known that speech signals 

contain many transient components and non-stationary property. Making use of the 

multi-resolution analysis (MRA) property of the WT, better time-resolution is needed a high 

frequency range to detect the rapid changing transient component of the signal, while better 

frequency resolution is needed at low frequency range to track the slowly time-varying 

formants more precisely [10]. Figure 1 displays the structure of three-layer wavelet 

decomposition utilized in this paper. We decompose an entire signal into four non-uniform 

subbands including three detailed scales such as D1, D2 and D3 and one appropriated scale 

such A3. 

 

Figure 1. Structure of three-layer wavelet decomposition 

 

3. Mean-delta method for subband auto-correlation function 

The well-known definition of the term "Auto-Correlation Function (ACF)" is usually used for 

measuring the self-periodic intensity of signal sequences shown as below: 
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where p  is the length of ACF. k  denotes as the shift of sample. 

In order to increase the efficiency of ACF about making use of periodicity detection to detect 

speech, the ACF is defined in subband domain, which called "subband auto-correlation 

function (SACF)". Figure 2 clearly illustrates the normalized SACFs for each subband when 

input speech is contaminated by white noise. In addition, a normalization factor is applied to 

the computation of SACF. This major reason is to provide an offset for insensitivity on 

variable energy level. From this figure, it is observed that the SACF of voiced speech has 

more obviously peaks than that of unvoiced speech and white noise. Similarly, for unvoiced 

speech the ACF has greater periodic intensity than white noise especially in the 

approximation 3A . 

Furthermore, a Mean-Delta (MD) method [9] over the envelope of each SACF is utilized 

herein to evaluate the corresponding intensity of periodicity on each subband. First, a 

measure which similar to delta cepstrum evaluation is mimicked to estimate the periodic 

intensity of SACF, namely "Delta Subband Auto-Correlation Function (DSACF)", shown 

below: 
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where MR&  is DSACF over an -sampleM  neighborhood ( 3M =  in this study). 

It is observed that the DSACF measure is almost like the local variation over the SACF. 

Second, averaging the delta of SACF over a -sampleM  neighborhood MR& , a mean of the 

absolute values of the DSACF (MDSACF) is given by 
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Observing the above formulations, the Mean-Delta method can be used to value the number 

and amplitude of peak-to-valley from the envelope of SACF. So, we just only sum up the four 

values of MDSACFs derived from the wavelet coefficients of three detailed scales and one 

appropriated scale, a robust feature parameter called "speech activity envelope (SAE)" is 

further proposed.  



Figure 3 displays that the MRA property is important to the development of SAE feature 

parameter. The proposed SAE feature parameter is respectively developed with/without 

band-decomposition. In Figure 3(b), the SAE without band-decomposition only provides 

obscure periodicity and confuses the word boundaries. Figure 3(c)~Figure 3(f) respectively 

show each value of MDSACF from D1 subband to A3 subband. It implies that the value of 

MDSACF can provide the corresponding periodic intensity for each subband. Summing up 

the four values of MDSACFs, we can form a robust SAE parameter. In Figure 3(g), the SAE 

with band-decomposition can point out the word boundaries accurately from its envelope. 

 

  

Figure 2. SACF on voiced, unvoiced signals and white noise 

 



  

Figure 3. SAE with/without band-decomposition 

 

4. Teager energy operator 

The Teager energy operator (TEO) is a powerful nonlinear operator, and can track the 

modulation energy and identify the instantaneous amplitude and frequency [7-10].  

In discrete-time, the TEO can be approximate by  

2[ ( )] ( ) ( 1) ( 1)d s n s n s n s nΨ = − + − , (4) 

where [ ( )]d s nΨ  is called the TEO coefficient of discrete-time signal ( )s n . 

Figure 4 indicates that the TEO coefficients not only suppress noise but also enhance the 

detection of subband periodicity. TEO coefficients are useful for SACF to discriminate the 

difference between speech and noise in detail.  



 

Figure 4. Illustration of TEO processing for the discrimination between speech and noise by 
using periodicity detection 

 

5. Proposed voice activity detection algorithm 

In this section, the proposed VAD algorithm based on DWT and TEO is presented. Fig. 8 

displays the block diagram of the proposed wavelet-based VAD algorithm in detail. For a 

given layer j , the wavelet transform decomposed the noisy speech signal into 1j +  

subbands corresponding to wavelet coefficients sets ,
j

k nw . In this case, three-layer wavelet 

decomposition is used to decompose noisy speech signal into four non-uniform subbands 

including three detailed scales and one appropriated scale. Let layer 3j = , 

3
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where 3
,k mw  defines the thm  coefficient of the thk  subband. N  denotes as window length. 

The decomposed length of each subband is 2kN  in turn. 

For each subband signal, the TEO processing [8] is then used to suppress the noise 



component, and also enhance the periodicity detection. In TEO processing, 
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Next, the SACF measures the ACF defined in subband domain, and it can sufficiently 

discriminate the dissimilarity among of voiced, unvoiced speech sounds and background 

noises from wavelet coefficients. The SACF derived from the Teager energy of noisy speech 

is given by 
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To count the intensity of periodicity from the envelope of the SACF accurately, the 

Mean-Delta (MD) method [9] is utilized on each subband. 

The DSACF is given by  

3 3
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where [ ]Δ ⋅  denotes the operator of delta. 

Then, the MDSACF is obtained by  
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where [ ]E ⋅  denotes the operator of mean. 

Finally, we sum up the values of MDSACFs derived from the wavelet coefficients of three 

detailed scales and one appropriated scale and denote as SAE feature parameter given by  
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6. Experimental results 

In our first experiment, the results of speech activity detection are tested in three kinds of 

background noise under various values of the SNR. In the second experiment, we adjust the 

variable noise-level of background noise and mix it into the testing speech signal. 

6.1. Test environment and noisy speech database 



The proposed wavelet-based VAD algorithm is based on frame-by-frame basis (frame size = 

1024 samples/frame, overlapping size = 256 samples). Three noise types, including white 

noise, car noise and factory noise, are taken from the Noisex-92 database in turn [11]. The 

speech database contains 60 speech phrases (in Mandarin and in English) spoken by 32 native 

speakers (22 males and 10 females), sampled at 8000 Hz and linearly quantized at 16 bits per 

sample. To vary the testing conditions, noise is added to the clean speech signal to create 

noisy signals at specific SNR of 30, 10, -5 dB. 

6.2. Evaluation in stationary noise 

In this experiment we only consider stationary noise environment. The proposed 

wavelet-based VAD is tested under three types of noise sources and three specific SNR 

values mentioned above. Table 1 shows the comparison between the proposed wavelet-based 

VAD and other two wavelet-based VAD proposed by Chen et al. [5] and J. Stegmann [12] and 

ITU standard VAD such as G.729B VAD [4], respectively. The results from all the cases 

involving various noise types and SNR levels are averaged and summarized in the bottom 

row of this table. We can find that the proposed wavelet-based VAD and Chen's VAD 

algorithms are all superior to Stegmann's VAD and G.729B over all SNRs under various types 

of noise. In terms of the average correct and false speech detection probabilities, the proposed 

wavelet-based VAD is comparable to Chen's VAD algorithm. Both the algorithms are based 

on the DWT and TEO processing. However, Chen et al. decomposed the input speech signal 

into 17 critical-subbands by using perceptual wavelet packet transform (PWPT). To obtain a 

robust feature parameter, called as "VAS" parameter, each critical subband after their 

processing is synthesized individually while other 16 subband signals are set to zero values. 

Next, the VAS parameter is developed by merging the values of 17 synthesized bands. 

Compare to the analysis/synthesis of wavelet from S. H. Chen et al., we only consider 

analysis of wavelet. The structure of three-layer decomposition leads into four non-uniform 

bands as front-end processing. For the development of feature parameter, we do not again 

waste extra computing power to synthesize each band. Besides, Chen's VAD algorithm must 

be performed in entire speech signal. The algorithm is not appropriate for real-time issue 

since it does not work on frame-based processing. Conversely, in our method the decisions of 

voice activity can be accomplished by frame-by-frame processing. Table 2 indicates that the 

computing time for the listed VAD algorithms running Matlab programming in Celeron 2.0G 

CPU for processing 118 frames of an entire recording. It is found that the computing time of 

Chen's VAD is nearly four times greater than that of other three VADs. Besides, the 



computing time of Chen's VAD is closely relative to the entire length of recording. 

 

Table 1. Comparison performance. 

 

 
Table 2. Illustrations of subjective listening evaluation and the computing time 

VAD types  Computing time (sec) 
Proposed VAD  0.089 
Chen’s VAD [5] 0.436 

Stegmann’s VAD [12] 0.077 
G.729B VAD [4] 0.091 

 

6.3. Evaluation in non-stationary noise 

In practice, the additive noise is non-stationary in real-world, since its statistical property 

change over time. We add the decreasing and increasing level of background noise on a clean 

speech sentence in English and the SNR is set 0 dB. Figure 6 exhibits the comparisons among 

proposed wavelet-based VAD, other one wavelet-based VAD respectively proposed by S. H. 

Chen et al. [5] and MD-based VAD proposed by A. Ouzounov [9]. Regarding to this figure, 

the mixed noisy sentence "May I help you?" is shown in Fig. 9(a). The increasing noise-level 

and decreasing noise-level are added into the front and the back of clean speech signal. 

Additionally, an abrupt change of noise is also added in the middle of clean sentence. The 

three envelopes of VAS, MD and SAE feature parameters are showed in Figure 6(b)~Figure 



6(d), respectively. It is found that the performance of Chen's VAD algorithm seems not good 

in this case. The envelope of VAS parameter closely depends on the variable level of noise. 

Similarly, the envelope of MD parameter fails in variable level of noise. Conversely, the 

envelope of proposed SAE parameter is insensitive to variable-level of noise. So, the 

proposed wavelet-based VAD algorithm is performed well in non-stationary noise. 

 

 
Figure 6. Comparisons among VAS, MD and proposed SAE feature parameters 

 

7. Conclusions 

The proposed VAD is an efficient and simple approach and mainly contains three-layer DWT 

(discrete wavelet transform) decomposition, Teager energy operation (TEO) and 

auto-correlation function (ACF). TEO and ACF are respectively used herein in each 

decomposed subband. In this approach, a new feature parameter is based on the sum of the 

values of MDSACFs derived from the wavelet coefficients of three detailed scales and one 

appropriated scale, and it has been shown that the SAE parameter can point out the boundary 

of speech activity and its envelope is insensitive to variable noise-level environment. By 

means of the MRA property of DWT, the ACF defined in subband domain sufficiently 

discriminates the dissimilarity among of voiced, unvoiced speech sounds and background 



noises from wavelet coefficients. For the problem about noise suppression on wavelet 

coefficients, a nonlinear TEO is then utilized into each subband signals to enhance 

discrimination among speech and noise. Experimental results have been shown that the 

SACF with TEO processing can provide robust classification of speech due to that TEO can 

provide a better representation of formants resulting distinct periodicity. 
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