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Abstract 

Propositional terms in a research abstract (RA) generally convey the most important 
information for readers to quickly glean the contribution of a research article. This paper 
considers propositional term extraction from RAs as a sequence labeling task using the IOB 
(Inside, Outside, Beginning) encoding scheme. In this study, conditional random fields 
(CRFs) are used to initially detect the propositional terms, and the combined association 
measure (CAM) is applied to further adjust the term boundaries. This method can extract 
beyond simply NP-based propositional terms by combining multi-level features and inner 
lexical cohesion. Experimental results show that CRFs can significantly increase the recall 
rate of imperfect boundary term extraction and the CAM can further effectively improve the 
term boundaries.  

摘要 

命題術語(Propositional Term)表達文章中重要概念且引導讀者文章脈絡之發展。這篇論

文以學術論文摘要為實驗對象進行命題術語擷取，研究中整合條件隨機域(Conditional 
Random Fields, CRFs) 以及結合聯繫測量(Combined Association Measure, CAM) 兩種方

法，考量詞彙內部凝聚力和文脈兩大類訊息，截取出的命題術語不再侷限於名詞片語型

態，且可由單詞或多詞所構成。在命題術語擷取的過程中，將其視為一種序列資料標籤

的任務，並利用 IOB 編碼方式識別命題述語的邊界，CRF 考量多層次構成命題述語的

特徵，負責初步命題術語偵測，再利用 CAM 計算詞彙凝聚力，藉以加強確認命題術語

詞彙的邊界。實驗結果顯示 ，本研究所提出的方法比以往述語偵測方法在效能上有明

顯增進，其中，CRF 明顯增進非完美術語詞彙邊界辨識(Imperfect hits)的召回率，而 CAM
則有效修正術語詞彙邊界。 

Keywords: Propositional Term Extraction, Conditional Random Fields, Combined 
Association Measure, Multi-Level Feature 
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1. Introduction 

Researchers generally review Research Abstracts (RAs) to quickly track recent research 
trends. However, many non-native speakers experience difficulties in writing and reading 
RAs [1]. The author-defined keywords and categories of the research articles currently 
utilized to provide researchers with access to content guiding information are cursory and 
general. Therefore, developing a propositional term extraction system is an attempt to exploit 
the linguistic evidence and other characteristics of RAs to achieve efficient paper 
comprehension. Other applications of the proposed method contain sentence extension, text 
generation, and content summarization. 

A term is a linguistic representation of a concept with a specific meaning in a particular 
field. It may be composed of a single word (called a simple term), or several words (a 
multiword term) [2]. A propositional term is a term that refers to the basic meaning of a 
sentence (the proposition) and helps to extend or control the development of ideas in a text. 
The main difference between a term and a propositional term is that a propositional term, 
which can guide the reader through the flow of the content, is determined by not only syntax 
or morphology but semantic information. Take RAs to illustrate the difference between a term 
and a propositional term. Cheng [3] indicted that a science RA is composed of background, 
manner, attribute, comparison and evaluation concepts. In Figure 1, the terms underlined are 
the propositional terms which convey the important information of the RA. In the clause 
“we present one of the first robust LVCSR systems that use a syllable-level acoustic unit for 
LVCSR, ＂  the terms “ LVCSR systems ＂ , “ syllable-level acoustic unit ＂  and 
“LVCSR＂ respectively represent the background, manner and background concepts of the 
research topic, and can thus be regarded as propositional terms in this RA. The background 
concepts can be identified by clues from the linguistic context, such as the phrases 
“most…LVCSR systems＂ and “in the past decade＂, which indicate the aspects of 
previous research on LVCSR. For the manner concept, contextual indicators such as the 
phrases “present one of…＂, “that use＂ and “for LVCSR＂ express the aspects of the 
methodology used in the research. Propositional terms may be composed of a variety of word 
forms and syntactic structures and thus may not only be NP-based, and therefore cannot be 
extracted by previous NP-based term extraction approaches. 

Most large vocabulary continuous speech recognition (LVCSR) systems in the past decade have used a 
context-dependent (CD) phone as the fundamental acoustic unit. In this paper, we present one of the 
first robust LVCSR systems that use a syllable-level acoustic unit for LVCSR on telephone-bandwidth 
speech. This effort is motivated by the inherent limitations in phone-based approaches-namely the lack 
of an easy and efficient way for modeling long-term temporal dependencies. A syllable unit spans a 
longer time frame, typically three phones, thereby offering a more parsimonious framework for 
modeling pronunciation variation in spontaneous speech. We present encouraging results which show 
that a syllable-based system exceeds the performance of a comparable triphone system both in terms of 
word error rate (WER) and complexity. The WER of the best syllable system reported here is 49.1% on 
a standard SWITCHBOARD evaluation, a small improvement over the triphone system. We also report 
results on a much smaller recognition task, OGI Alphadigits, which was used to validate some of the 
benefits syllables offer over triphones. The syllable-based system exceeds the performance of the 
triphone system by nearly 20%, an impressive accomplishment since the alphadigits application 
consists mostly of phone-level minimal pair distinctions. 

Figure1. A Manually-Tagged Example of Propositional Terms in an RA 

In the past, there were three main approaches to term extraction: linguistic [4], statistical 
[5, 6], and C/NC-value based [7,8] hybrid approaches. Most previous approaches can only 
achieve a good performance on a test article composed of a relatively large amount of words. 
Without the use of large amount of words, this study proposes a method for extracting and 



 

weighting single- and multi-word propositional terms of varying syntactic structures. 

2. System Design and Development 

This research extracts the propositional terms beyond simply the NP-based propositional 
terms from the abstract of technical papers and then regards propositional term extraction as a 
sequence labeling task. To this end, this approach employs an IOB (Inside, Outside, 
Beginning) encoding scheme [9] to specify the propositional term boundaries, and 
conditional random fields (CRFs) [10] to combine arbitrary observation features to find the 
globally optimal term boundaries. The combined association measure (CAM) [11] is further 
adopted to modify the propositional term boundaries. In other words, this research not only 
considers the multi-level contextual information of an RA (such as word statistics, tense, 
morphology, syntax, semantics, sentence structure, and cue words) but also computes the 
lexical cohesion of word sequences to determine whether or not a propositional term is 
formed, since contextual information and lexical cohesion are two major factors for 
propositional term generation. 

 
Figure 2. The System Framework of Propositional Term Extraction 

The system framework essentially consists of a training phase and a test phase. In the 
training phase, the multi-level features were extracted from specific domain papers which 
were gathered from the SCI (Science Citation Index)-indexed and SCIE (Science Citation 
Index Expanded)-indexed databases. The specific domain papers are annotated by experts 
and then parsed. The feature extraction module collects statistical, syntactic, semantic and 
morphological level global and local features, and the parameter estimation module calculates 
conditional probabilities and optimal weights. The propositional term detection CRF model 
was built with feature extraction module and the parameter estimation module. During the 
test phase users can input an RA and obtain system feedback, i.e. the propositional terms of 
the RA. When the CRF model produces the preliminary candidate propositional terms, the 
propositional term generation module utilizes the combined association measure (CAM) to 
adjust the propositional term boundaries. The system framework proposed in this paper for 
RA propositional term extraction is shown in Figure 2. A more detailed discussion is 
presented in the following subsections. 



 

2.1. Assisted Resource 

In order to produce different levels of information and further assist feature extraction in the 
training and test phases, several resources were employed. This study chooses the ACM 
Computing Classification System (ACM CSS) [12] to serve as the domain terminology list 
for propositional term extraction from computer science RAs. The ACM CSS provides 
important subject descriptors for computer science, and was developed by the Association for 
Computing Machinery. The ACM CSS also provides a list of Implicit Subject Descriptors, 
which includes names of languages, people, and products in the field of computing. A 
mapping database, derived from WordNet (http://wordnet.princeton.edu/) and SUMO 
(Suggested Upper Merged Ontology) (http://ontology.teknowledge.com/) [13], supplies the 
semantic concept information of each word and the hierarchical concept information from the 
ontology. The AWL (Academic Words List) (http://www.vuw.ac.nz/lals/research/awl/) [14] is 
an academic word list containing 570 word families whose words are selected from different 
subjects. The syntactic level information of the RAs was obtained using Charniak’s parser 
[15], which is a “maximum-entropy inspired” probabilistic generative model parser for 
English.  

2.2. Conditional Random Fields (CRFs) 

For this research goal, given a word sequence 1 2{ , ,..., }nW w w w= , the most likely propositional 
term label sequence 1 2{ , ,..., }nS s s s=  in the CRF framework with the set of weights Ψ  can be 
obtained from the following equation.    

( )ˆ arg max |SS P S WΨ=                                               （1） 

A CRF is a conditional probability sequence as well as an undirected graphical model 
which defines a conditional distribution over the entire label sequence given the observation 
sequence. Unlike Maximum Entropy Markov Models (MEMMs), CRFs use an exponential 
model for the joint probability of the whole label sequence given the observation to solve the 
label bias problem. CRFs also have a conditional nature and model the real-world data 
depending on non-independent and interacting features of the observation sequence. A CRF 
allows the combination of overlapping, arbitrary and agglomerative observation features from 
both the past and future. The propositional terms extracted by CRFs are not restricted by 
syntactic variations or multiword forms and the global optimum is generated from different 
global and local contributor types. 

The CRF consists of the observed input word sequence 1 2{ , ,..., }nW w w w=  and label state 

sequence 1 2{ , ,..., }nS s s s=  such that the expansion joint probability of a state label sequence 
given an observation word sequence can be written as 
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where ( )1, ,k t tf s s W−  are the transition features of the global observation sequence and the states 
at positions t and t-1 in the corresponding state sequence, and ( ),k tg s W  is a state feature 

function of the label at position t and the observation sequence. Let kλ  be the weight of each 

kf , kμ  be the weight of kg  and 0

1
Z  be a normalization factor over all state sequences, 
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The set of weights in a CRF model, ( ),k kλ μΨ = , is usually estimated by maximizing the 
conditional log-likelihood of the labeled sequences in the training data { }( ) ( )
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(Equation (3)) For fast training, parameter estimation was based on L-BFGS (the 
limited-memory BFGS) algorithm, a quasi-Newton algorithm for large scale numerical 
optimization problems [16]. The L-BFGS had proved [17] that converges significantly faster 
than Improved Iterative Scaling (IIS) and General Iterative Scaling (GIS).  
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After the CRF model is trained to maximize the conditional log-likelihood of a given 
training set P(S|W), the test phase finds the most likely sequence using the combination of 
forward Viterbi and backward A* search [18]. The forward Viterbi search makes the labeling 
task more efficient and the backward A* search finds the n-best probable labels.  

2.3. Multi-Level Features 

According to the properties of propositional term generation and the characteristics of 
the CRF feature function, this paper adopted local and global features which consider 
statistical, syntactic, semantic, morphological, and structural level information. In the CRF 
model, the features used were binary and were formed by instantiating templates, and the 
maximum entropy principle was provided for choosing the potential functions. Equation (4) 
shows an example of a feature function, which was set to 1 when the word was found in the 
rare words list (RW).  
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2.3.1. Local Feature 

(1). Morphological Level: 

Scientific terminology often ends with similar words, e.g. “algorithm” or “model”, or is 
represented by connected words (CW) expressed with hyphenation, quotation marks or 
brackets. ACMCSS represents entries in the ACM Computing Classification System (ACM 
CSS). The last word of every entry in the ACM CSS (ACMCSSAff) satisfies the condition 
that it is a commonly occurring last word in scientific terminology. The existing propositional 
terms of the training data were the seeds of multiword terms (MTSeed).  

Words identified as acronyms were stored as useful features, consisting of IsNenadic, 
IsISD, and IsUC. IsNenadic was defined using the methodology of Nenadić, Spasić and 
Ananiadou [19] to acquire possible acronyms of a word sequence that was extracted by the 
C/NC value method. IsISD refers to the list of Implicit Subject Descriptors in the ACM CCS 
and IsUC signifies that all characters of the word were uppercase 

(2). Semantic Level:  

MeasureConcept infers that the word was found under SUMO’s 



 

“UNITS-OF-MEASURE” concept subclass and SeedConcept denotes that the concept of the 
word corresponded to the concept of a propositional term in the training data. 

(3). Frequency Level:  

A high frequency word list (HF) was generated from the top 5 percent of words in the 
training data. A special words list (SW) consists of the out-of-vocabulary and rare words. 
Out-of-vocabulary words are those words that do not exist in WordNet. Rare words are words 
not appearing in the AWL or which appear in less than 5 different abstracts. 

(4). Syntactic Level:  

This feature was set to 1 if the syntactic pattern of the word sequence matched the 
regular expression “(NP)*(preposition)?(NP)*” (SynPattern), or matched the terms in the 
training data (SeedSynPattern). SyntaxCon means that concordances of ACMCSSAff or 
ACMCSSAffSyn (ACMCSSAff synonyms) used the keyword in context to find the syntactic 
frame in the training data. If the part-of-speech (POS) of the word was a cardinal number, 
then this feature CDPOS was set to 1. 

(5). Statistical and Syntactic Level:  

This research used the CRF model to filter terms extracted by the C/NC value approach 
with no frequency threshold  

2.3.2. Global Feature 

(1). Cue word:  

KeyWord infers that the word sequence matched one of the user’s keywords or one word 
of the user’s title. IsTransW and IsCV represent that a word was found in an NP after TransW 
or CV respectively. TransW indicates summative and enumerative transitional words, such as 
“in summary”, “to conclude”, “then”, “moreover”, and “therefore”, and CV refers to words 
under SUMO’s “communication” concepts, such as “propose”, “argue”, “attempt” and so on.  

(2). Tense:  

If the first sentence of the RA is in the past tense and contains an NP, then the word 
sequence of that NP was used as a useful feature PastNP. This is because the first sentence 
often impresses upon the reader the shortest possible relevant characterization of the paper, 
and the use of past tense emphasizes the importance of the statement. 

(3). Sentence structure:  

Phrases in a parallel structure sentence refers to the phrases appearing in a sentence 
structure such as Phrase, Phrase, or (and) Phrase, and implies that the same pattern of words 
represents the same concept. ParallelStruct indicates that the word was part of a phrase in a 
parallel structure.  

2.4. Word Cohesiveness Measure 

By calculating the cohesiveness of words, the combined association measure (CAM) can 
assist in further enhancing and editing the CRF-based propositional term boundaries for 
achieving a perfect boundary of propositional terms. CAM extracts the most relevant word 
sequence by combining endogenous linguistic statistical information, including word form 
sequence and its POS sequence. CAM is a variant of normalized expectation (NE) and 



 

mutual expectation (ME) methods.  

To characterize the degree of cohesiveness of a sequence of textual units, NE evaluates 
the average cost of loss for a component in a potential word sequence. NE is defined in 
Equation (5) where the function c(·) means the count of any potential word sequence. An 
example of NE is shown in Equation (6). 
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Based on NE and relative frequency, the ME of any potential word sequence is defined 
as Equation (7), where function P(·) represents the relative frequency.  

[ ]( ) [ ]( ) [ ]( )1 1 1... ... ... ... ... ...i n i n i nME w w w P w w w NE w w w= ×                      (7) 

CAM considers that the global degree of cohesiveness of any word sequence is 
evaluated by integrating the strength in a word sequence and the interdependence of its POS. 
Thus CAM evaluates the cohesiveness of a word sequence by the combination of its own ME 
and the ME of its associated POS sequence. In Equation (8), CAM integrates the ME of word 
form sequence [ ]1... ...i nw w w  and its POS [ ]1... ...i np p p . Let α be a weight between 0 and 1, 
which determines the degree of the effect of POS or word sequence in the word cohesiveness 
measure. 

[ ]( ) [ ]( ) [ ]( )11 1 1... ... ... ... ... ...i n i n i nCAM w w w ME w w w ME p p p
α α−

= ×               (8) 

This paper uses a sliding window moving in a frame and compares the CAM value of 
neighboring word sequences to determine the optimal propositional term boundary. Most 
lexical relations associate words distributed by the five neighboring words [20]. Therefore 
this paper only calculates the CAM value of the three words to the right and the three words 
to the left of the CRF-based terms. Figure 3 represents an illustration for the CAM 
computation that was fixed in the [(2*3) + length(CRF-Based term)] frame size with a sliding 
window. When the window starts a forward or backward move in the frame, the three 
marginal words of a term are the natural components of the window. As the word number of 
the CRF term is less than three words, the initial sliding windows size is equal to the word 
number of the term.  



 

 
Figure 3. An Illustration for the CAM Computation Steps 

To find the optimal propositional term boundary, this study calculates the local 
maximum CAM value by using the Modified CamLocalMax Algorithm. The principle of the 
original algorithm [21] is to infer the word sequence as a multiword unit if the CAM value is 
higher than or equal to the CAM value of all its sub-group of (n-1) words and if the CAM 
value is higher than the CAM value of all its super-group of (n+1) words. In the Modified 
CamLocalMax Algorithm, when the CAM value of the combination of CRF-based single 
word propositional terms and its immediate neighbor word is higher than the average of the 
CAM value of bi-gram propositional terms in the training data, the components of the 
CRF-based single word propositional terms are turned into a bi-gram propositional term. The 
complete Modified CamLocalMax Algorithm is shown in the following, where cam means 
the combined association measure, size(·) returns the number of words of a possible 
propositional term, M represents a possible propositional term, Ωn+1 denotes the set of all the 
possible (n+1)grams containing M, Ωn-1 denotes the set of all the possible (n-1)grams 
contained in M, and bi-term typifies bi-gram propositional terms in the training data. 

 
Input: M, a possible propositional term, 1ny +∀ ∈Ω , the set of all the possible (n+1)grams 
containing M, 1nx −∀ ∈Ω , the set of all the possible (n-1)grams contained in M 
Output: CT={ct1,ct2,…ctn}, a CRF+CAM-based propositional term set 
If   (size(M)=2 and  cam(M) > cam(y))   

or ( size(M)>2 and  cam(M) ≧ cam(x)  and cam(M) >cam(y) )  
or ( size(M)=1 and cam(bi-gram) ≦ cam(M) ) 

End if 
Return ct 

 

2.5. Propositional Term Generation Algorithm 

The Propositional Term Generation algorithm utilizes the CRF model to generate a 
CRF-based propositional term set T={t1,t2,…tn} and calculates the CAM value to produce a 
CRF+CAM-based propositional term set CT={ct1,ct2,…ctn}. The detailed processes of the 
Propositional Term Generation algorithm are as follows 

k
nt : the word form sequence from the first word 1 to last word k of CRF-based propositional term tn 

Input: Word sequence 1
nW   

Output: T={t1,t2,…tn}, a CRF-based propositional term set and, CT={ct1,ct2,…ctn}, a CRF+CAM-based 
propositional term set 

Input 1
nW to generate T={t1,t2,…tn} by CRF 

For all tj∈T  
 For a=0 to a =2 Step 1 



 

 ctj=Modified_CamLocalMax( j
k at + , 1

j
k at + − , 1

j
k at + + ) 

 CT  CT∪ct 
 End for 
 If tj ∉  CT Then 
  For a=0 to a =-2 Step -1 
   ctj=Modified_CamLocalMax( 1

j
at + , 1 1

j
at + − , 1 1

j
at + + ) 

   CT  CT∪ctj 
  End for 
 End if 
End for 
Return T, CT 

2.6. Encoding Schema 

The IOB encoding scheme was adopted to label the words, where I represents words Inside 
the propositional term, O marks words Outside the propositional term, and B denotes the 
Beginning of a propositional term. It should be noted that here the B tag differs slightly from 
Ramshaw and Marcus’s definition, which marks the left-most component of a baseNP for 
discriminating recursive NPs. Figure 4 shows an example of the IOB encoding scheme that 
specifies the B, I, and O labels for the sentence fragment “The syllable-based system exceeds 
the performance of the triphone system by…”. An advantage of this encoding scheme is that it 
can avoid the problem of ambiguous propositional term boundaries, since IOB tags can 
identify the boundaries of immediate neighbor propositional terms, whereas binary-based 
encoding schemes cannot. In Figure 4, “syllable-based system”, and “exceeds” are individual 
and immediate neighbor propositional terms distinguished by B tags. 

 
Figure 4. An Example of the IOB Encoding Scheme 

3. Evaluation 

3.1. Experimental Setup 

To facilitate the development and evaluation of the propositional term extraction method, 
experts manually annotated 260 research abstracts, including speech, language, and 
multimedia information processing journal papers from SCI and SCIE-indexed databases. In 
all, there were 109, 72, and 79 annotated research abstracts in the fields of speech, language, 
and multimedia information processing, respectively. At run time, 90% of the RAs were 
allocated as the training data and the remaining 10% were reserved as the test data for all 
evaluation. 

In system implementation, the CRF++: Yet Another CRF toolkit 0.44 [22] was adopted. 
The training parameters were chosen using ten-fold cross-validation on each experiment. 

The proposed system was compared with three baseline systems. The first was the 
C/NC-value algorithm with no frequency threshold, because the C/NC-value algorithm is a 
hybrid methodology and its historical result is better than the linguistic and statistical 
approaches. The second baseline system proposed by Nenadić et al. [8] is a variant of the 



 

C/NC-value algorithm enriched by morphological and structural variants. The final baseline 
system is a linguistic approach proposed by Ananiadou [4]. That study, however, made no 
comparisons with statistical approaches which are suitable for a document containing a large 
amount of words. 

To evaluate the performance in this study, two hit types for propositional term extraction: 
perfect and imperfect [23] are employed. A perfect hit means that the boundaries of a term’s 
maximal term form conform to the boundaries assigned by the automatic propositional term 
extraction. An imperfect hit means that the boundaries assigned by the automatic 
propositional term extraction do not conform to the boundaries of a term’s maximal term 
form but include at least one word belonging to a term’s maximal term form. Taking the word 
sequence “large vocabulary continuous speech recognition” as an example, when the system 
detects that “vocabulary continuous speech recognition” is a propositional term, it then 
becomes an imperfect hit. There is only one perfect hit condition where “large vocabulary 
continuous speech recognition” is recognized. The metrics of recall and precision were also 
used to measure the perfect and imperfect hits. The definition of recall and precision of 
perfect hits and imperfect hits are shown in Equation (9) and Equation (10). Thus, our system 
is evaluated with respect to the accuracies of propositional term detection and propositional 
term boundary detection. That is, our motivation for propositional term extraction was to 
provide CRF and CRF+CAM for accurate detection of propositional terms and the 
improvement of the detected propositional term boundaries. 

Hits Perfect (or Imperfect)Recall= Target Termforms                               (9) 

Hits Perfect (or Imperfect)Precision= Extracted Termforms                          (10) 

3.2. Experimental Results 

This study evaluated empirically two aspects of our research for different purposes. First, the 
performance of propositional term extraction for CRF-based and CRF+CAM-based 
propositional term sets on different data was measured. Second, the impact of different level 
features for propositional term extraction using CRF was evaluated. 

Evaluation of Different Methods 
Table 1. The Performance of Imperfect Hits on Different Data 

Method R P F R P F 
 All Data Language Data 

CRF Inside Testing 93.2 94.5 93.9 96.7 98.1  97.4  
CRF +CAM Inside Testing 96.6 96.0 96.3 98.4 99.6  99.0  
CRF Outside Testing 77.1 74.1 75.6 78.6 76.3  77.4  
CRF +CAM Outside Testing 82.6 82.5 82.6 85.8 88.8  87.2  
C/NC Value 53.4 65.3 58.8 48.1 53.3  50.6  
Ananiadou 51.3 70.0 59.2 52.4 68.4  59.3  
Nenadić et al. 58.0 72.3 64.4 60.1 69.0  64.3  

 Speech Data Multimedia Data 
CRF Inside Testing 96.6 99.0 98.2 98.0 99.2 98.6 
CRF +CAM Inside Testing 97.5 99.0 99.4 98.6 99.3 99.0 
CRF Outside Testing 74.9 76.1 74.3 61.2 65.0 63.1 
CRF +CAM Outside Testing 82.6 83.9 84.2 65.4 71.2 68.2 
C/NC Value 53.5 79.0 62.7 67.7 53.2 59.6 
Ananiadou 53.1 68.4 59.8 65.4 60.0 62.6 



 

Nenadić et al. 59.6 72.2 65.3 68.9 55.2 61.3 

Table 1 lists the recall rate, the precision rate and F-score of propositional term 
extraction for imperfect hits of different domain data. In each case, the recall and precision of 
imperfect hits using CRF inside testing was greater than 93%. The CRF outside test achieved 
approximately 73% average recall and 73% average precision for imperfect hits, and the 
CAM approach improved the original performance of recall and precision for imperfect hits. 
The C/NC-value approach achieved approximately 56% average recall and 63% average 
precision for imperfect hits. The performance of Ananiadou’s approach was about 56% 
average recall and 67% average precision for imperfect hits. Another baseline, the approach 
of Nenadić, Ananiadou and McNaught, obtained approximately 62% average recall and 67% 
average precision for imperfect hits. 

Table 2. The Performance of Perfect Hits on Different Data 
Method R P F R P F 

 All Data Language Data 
CRF Inside Testing 66.5 66.2 66.3 66.4 67.5 67.0 
CRF +CAM Inside Testing 69.0 68.6 68.8 69.4 69.9 69.6 
CRF Outside Testing 39.8 42.2 41.9 43.2 37.3 40.0 
CRF +CAM Outside Testing 43.5 49.2 46.2 45.3 45.4 45.3 
C/NC Value 27.6 37.8 31.9 28.9 29.1 29.0 
Ananiadou 26.3 37.9 31.1 31.3 37.7 34.2 
Nenadić et al. 30.2 41.0 34.8 31.2 40.9 35.4 

 Speech Data Multimedia Data 
CRF Inside Testing 62.3  61.0  61.7  70.9 70.3 70.6 
CRF +CAM Inside Testing 69.6  67.9  68.7  73.1 70.3 71.6 
CRF Outside Testing 36.9  41.6  39.1  42.1 42.5 42.3 
CRF +CAM Outside Testing 42.8  48.9  45.6  45.6 45.0 44.3 
C/NC Value 29.0  40.0  33.6  34.6 29.9 32.1 
Ananiadou 27.4  37.7  31.7  29.3 38.0 33.1 
Nenadić et al. 30.0  38.6  33.7  35.3 37.6 35.3 

Table 2 summarizes the recall rates, precision rates and F-score of propositional term 
extraction for perfect hits of data from different domains. The CRF inside test achieved 
approximately 67% average recall and 66% average precision on perfect hits, but the CRF 
outside test did not perform as well. However, the CAM approach still achieved an increase 
of 1%-7% for perfect hits. The C/NC-value approach obtained approximately 30% average 
recall and 34% average precision for perfect hits. Ananiadou’s approach achieved 
approximately 29% average recall and 38% average precision for perfect hits. The 
performance of Nenadić, Ananiadou and McNaught’s approach was about 32% average recall 
and 40% average precision for perfect hits. 

The results show that the C/NC-value does not demonstrate a significant change over 
different fields, except for the multimedia field, which had slightly better recall rate. The 
main reasons for errors produced by C/NC-value were propositional terms that were single 
words or acronyms, propositional terms that were not NP-based, or propositional terms that 
consisted of more than four words.  

Ananiadou’s approach was based on a morphological analyzer and combination rules for 
the different levels of word forms. Experimental results showed that this approach is still 
unable to deal with single words or acronyms, and propositional terms that are not NP-based.  

Nenadić et al.’s approach considered local morphological and syntactical variants using 
C value to determine the propositional terms. This approach had slightly better performance 
than the C/NC value methodology. Acronyms were included in the propositional term 



 

candidates but were filtered by frequency, as they often appear only a few times. This 
approach also ignored single words, and propositional terms that were not NP-based. 
Furthermore, none of these three baseline systems are suitable for handling special symbols.  

For CRF inside testing, both the precision and recall rates were significantly better for 
imperfect hits, but the precision and recall rates were reduced by about 30% for perfect hits in 
most RAs. Due to insufficient training data, CRF no longer achieved outstanding results. In 
particular, the large variability and abstract description of the multimedia field RAs led to 
huge differences between measures. For example, in the sentence “For surfaces with varying 
material properties, a full segmentation into different material types is also computed”, “full 
segmentation into different material types” is a propositional term that it isn’t concretely 
specified as a method. CRF achieved a better result in recall rate, but failed on propositional 
term boundary detection, unlike the C/NC-value approach.  

The CAM approach effectively enhanced propositional term boundary detection by 
calculating word cohesiveness, except in the case of multimedia data. The CAM approach 
couldn’t achieve similar performance for the multimedia data as a result of the longer word 
count of terms that differ from the data of other fields. However, the CAM approach 
performed best with α equal to 0.4, which demonstrates that the POS provided a little more 
contribution for multiword term construction. The CAM approach not only considered the 
POS sequence but also the word sequence, therefore the results are a little better for speech 
data, which is the biggest part of the training data (SCI and SCIE-indexed databases). 

The above results show that the CRF approach exhibited impressive improvements in 
propositional term detection. The major reason for false positives was that the amount of the 
data was not enough to construct the optimal model. Experimental results revealed that the 
CAM is sufficiently efficient for propositional term boundary enhancement but the longer 
word count of propositional terms were excluded. 

Evaluation of Different Level Features 
In order to assess the impact of different level features on the extraction method, this 

paper also carried out an evaluation on the performance when different level features were 
omitted. Table 3 presents the performance of CRF when omitting different level features for 
imperfect hits and the symbol “-” denoted the test without a level feature. For all data, the 
recall rate was reduced by approximately 1%- 5% and the precision rate was reduced by 
approximately 2%- 6% in inside testing result. In all data outside testing, the recall rate was 
reduced by 2%-10% and the precision rate was reduced by 1%-5%. The recall and precision 
for speech data retained similar results from semantic level features, but showed little impact 
from other local features. For language data, without morphological, syntactic, frequency, and 
syntactic & statistical level features the performance was slightly worse than the original 
result and without semantic level features the original performance was preserved. The 
performance for multimedia data was affected greatly by semantic level features. A slight 
improvement without morphological, and syntactic & statistical level features and similar 
results were obtained when frequency and syntactic level features were omitted.  

Table 3. The Performance of CRF Excepting Different Level Features for Imperfect Hits 
All Speech Language MultimediaData Type

Testing Type R P R P R P R P 
Inside -Frequency Features 92 92 94 97 95 97 98 98 
Inside -Morphological Features 88 90 92 96 93 96 97 97 
Inside -Syntactic Features 90 89 94 96 95 97 97 98 
Inside -Semantic Features 92 92 96 98 97 98 95 97 
Inside -Syntactic & Statistical Features 90 93 93 95 95 96 96 98 
Inside Testing 93 95 97 99 97 98 98 99 
Outside -Frequency Features 74 73 71 73 76 74 60 65 



 

Outside -Morphological Features 71 71 59 69 70 68 58 65 
Outside -Syntactic Features 67 69 60 71 71 71 59 64 
Outside -Semantic Features 75 75 75 76 78 76 41 60 
Outside -Syntactic &Statistical Features 71 73 67 71 70 70 55 65 
Outside Testing 77 74 75 76 79 76 61 65 

In Table 4, it can be noticed that the omission of any single level features results in a 
deterioration in the performance of perfect hits. Removing the syntactic level features had the 
most pronounced effect on performance for all, speech and language data, while removing the 
semantic level features had the least effect on performance for all, speech and language data. 
According to the experimental results, the use of the frequency features did not result in any 
significant performance improvement for the multimedia data, and the use of the syntactic 
and syntactic & statistical level features did not result in any performance improvement for 
the multimedia data. Removing the semantic level features had the greatest effect on the 
performance for the multimedia data. 

Table 4. The Performance of CRF without Different Level Features for Perfect Hits 
All Speech Language MultimediaData Type

Testing Type R P R P R P R P 
Inside -Frequency Features 63 60 56 55 61 64 60 60 
Inside -Morphological Features 61 61 57 54 61 64 70 68 
Inside -Syntactic Features 60 60 55 57 63 65 68 67 
Inside -Semantic Features 65 62 59 60 66 69 62 62 
Inside -Syntactic &Statistical Features 62 61 57 52 62 64 71 68 
Inside Testing 67 66 62 61 66 68 71 70 
Outside -Frequency Features 36 38 34 35 37 34 40 40 
Outside -Morphological Features 33 35 32 36 35 34 40 39 
Outside -Syntactic Features 35 36 32 38 37 32 39 40 
Outside -Semantic Features 38 40 36 40 41 36 29 31 
Outside -Syntactic &Statistical Features 38 39 32 37 35 33 40 40 
Outside Testing 40 42 37 42 42 37 42 42 

Overall the five different level features were all somewhat effective for propositional 
term extraction. This suggests that propositional terms are determined by different level 
feature information which can be effectively used for propositional term extraction. The 
frequency level features contributed little for propositional term extraction in all and speech 
data. This may be due to the fact that speech data comprised the main portion of the training 
data. In the multimedia case, the semantic level features were useful. Although semantic level 
features may include some useful information, it was still a problem to correctly utilize such 
information in the different domain data for propositional term extraction. Syntactic and 
morphological level features obtained the best performance for all, speech and language data. 
This may be due to the amount of training data in each domain and the various word forms of 
propositional terms in the multimedia data. The syntactic and statistical level features 
improved or retained the same performance, which indicates the combined effectiveness of 
syntactic and statistical information. 

3.3. Error Analysis 
Table 5 shows the distribution of error types on propositional term extraction for each 

domain data using outside testing. This study adopts the measure used in [24] to evaluate the 
error type, where M indicates the condition when the boundary of the system and that of the 
standard match, O denotes the condition when the boundary of the system is outside that of 
the standard and I denotes the condition when the boundary of the system is inside that of the 
standard. Therefore, the MI, IM, II, MO, OM, IO, OI and OO error types were used to 



 

evaluate error distribution. The relative error rate (RER) and the absolute error rate (AER) 
were computed in error analysis, the relative error rate was compared with all error types, and 
the absolute error rate was compared with the standard. In the overall error distribution, the 
main error type was “IM” and “MI” and the CRF+CAM can significantly reduce those two 
error types.  

Table 5. Distribution of Error Types on Propositional Term Extraction 
CRF CRF+CAM CRF CRF+CAM Error Type 

RER AER RER AER RER AER RER AER
 All Data Speech Data 

MI 24.62 6.11 18.00 2.90 24.90 6.41 20.30 3.03 
IM 36.48 8.72 28.50 4.88 38.22 8.06 32.50 4.08 
II 18.67 4.96 23.40 3.88 12.37 2.88 14.80 2.05 
MO, OM, IO, OI 7.49 3.08 12.50 1.07 10.50 2.46 12.85 1.85 
OO 12.74 2.91 17.60 2.08 14.01 4.55 19.55 2.53 

 Language Data Multimedia Data 

MI 23.11 4.03 18.50 2.67 19.18 6.58 17.25 4.64 
IM 31.25 9.08 28.50 3.56 25.72 9.00 19.10 4.05 
II 26.48 7.50 31.00 4.07 36.34 10.63 34.34 8.30 
MO,OM,IO,OI 8.12 1.03 12.45 1.89 6.42 5.00 10.09 1.53 
OO 11.04 2.06 9.55 1.20 12.34 4.85 19.22 3.85 

4. Conclusion 

This study has presented a conditional random field model and a combined association 
measure approach to propositional term extraction from research abstracts. Unlike previous 
approaches using POS patterns and statistics to extract NP-based multiword terms, this 
research considers lexical cohesion and context information, integrating CRFs and CAM to 
extract single or multiword propositional terms. Experiments demonstrated that in each 
corpus, both CRF inside and outside tests showed an improved performance for imperfect 
hits. The proposed approach further effectively enhanced the propositional term boundaries 
by the combined association measure approach which calculates the cohesiveness of words. 
The conditional random field model initially detects propositional terms based on their local 
and global features, which includes statistical, syntactic, semantic, morphological, and 
structural level information. Experimental results also showed that different multi-level 
features played a key role in CRF propositional term detection model for different domain 
data.  
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