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Abstract 

This paper is to compare two most common features representing a speech word for speech 
recognition on the basis of accuracy, computation time, complexity and cost.  The two 
features to represent a speech word are the linear predict coding cepstra (LPCC) and the 
Mel-frequency cepstrum coefficient (MFCC).  The MFCC was shown to be more accurate 
than the LPCC in speech recognition using the dynamic time warping method.  In this paper, 
the LPCC gives a recognition rate about 10% higher than the MFCC using the Bayes decision 
rule for classification and needs much less computational time to be extracted from speech 
signal waveform, i.e., the MFCC needs computational time 5.5 time as much as the LPCC 
does.  The algorithm to compute a LPCC from a speech signal much simpler than a MFCC, 
which has many parameters to be adjusted to smooth the spectrum, performing a processing 
that is similar to be adjusted to smooth the spectrum, performing a processing that is similar 
to that executed by the human ear, but the LPCC is easily obtained by the least squares 
method using a set of recursive formula. 

Key words: Bayes decision rule, linear predict coding, Mel-frequency cepstrum coefficient, 
signal processing, speech recognition. 

1. Introduction 

A speech recognition system basically contains extraction of features and classification 
of an utterance of an acoustical word. The measurements made on the speech waveform 
include energy, zero crossings, extrema count, formants, LPC cepstrum (LPCC) [1-4] and the 
Mel frequency cepstrum coefficient (MFCC) [5-8].  The LPC method provides a robust, 
reliable and accurate method for estimating the parameters that characterize the linear, 
time-varying system which is recently used to approximate the nonlinear, time-varying 
system of the speech waveform. The MFCC method uses the bank of filters scaled according 
to the Mel scale to smooth the spectrum, performing a processing that is similar to that 
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executed by the human ear.  The filters with Mel scales spaced linearly at low frequencies 
and logarithmically at high frequencies are used to capture phonetically the characteristics of 
speech [8].  For recognition, Davis and Mermelstein [5] used the dynamic time warping 
algorithm to show that the performance of the MFCC was better than the LPCC.  

In this paper, we use a simple technique [9] for speech data compression of the 
sequence of MFCC vectors and the sequence of LPCC vectors to obtain a matrix of feature 
values respectively. For speech recognition, we simply use a simplified Bayes decision rule 
with weighted variance, where each step is a simple calculation and which has the minimum 
probability of misclassification. In our study, there are two speech recognition experiments.  
In the first experiment, since both LPCC and MFCC are said to be robust and reliable to noise 
and estimation errors, our speech experiment is implemented in a noisy environment to test 
which feature is better on speech recognition.  Pick up 9 female and 10 male students and 
each pronounces 10 digits once using a common (not high-quality) microphone. Some 
students pronounce mandarin syllables not very clearly, since we have several types of 
accents to pronounce the same mandarin syllables.  In the second experiment, there are 87 
students to pronounce the mandarin syllables in a quiet classroom, which are most commonly 
used in usual conversations.  Our speech experiment is done like natural talking. Hence our 
speech system can be commonly used for all peoples and in all environments. The 
recognition rate using LPCC is significantly better than the rate using MFCC and the LPCC 
needs much less computational time to be extracted from speech signal waveform. 

2. Bayes Decision Rules 

Let  be the input feature vector of a speech data, which belongs to 
one of  categories (syllables) c
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separate  categories.  Let the minimum probability of misclassification be denoted by m
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A decision rule  which satisfies (2.2) is called the Bayes decision rule with respect to 
the prior distribution 

τ

τ  and is given in (2.3) [10].  We state the Bayes decision rule in the 
following theorem. 

τ  is defined by Theorem 2.1. [10] The Bayes decision rule with respect to 
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     Note that if m/1i =θ , , the Bayes decision rule (2.3) become a ML 
classifier. 

mi  ..., ,1=

3. Feature Extraction 

3.1 Preprocessing Speech Signal 

Since our speech recognition experiment is implemented in a noisy environment, the 
speech data must contain noise.  We propose two simple methods to eliminate noise. One 
way is to use the sample variance of a fixed number of sequential samples to detect the real 
speech signal, i.e., the samples with small variance does not contain speech signal.  
Another way is to compute the sum of the absolute values of difference of two consecutive 
samples in a fixed number of sequential speech samples, i.e., the speech data with small 
absolute value do not contain real speech signal.  In our speech recognition experiment, 
the latter provides slightly faster and more accurate speech recognition. 

3.2 Mel-Frequency Cepstrum Coefficient (MFCC) 

The MFCC is a representation defined as the real cepstrum of a windowed short-time 
signal derived from the fast Fourier transform of the speech signal. In the MFCC, a 
nonlinear frequency scale is used, which approximates the behavior of the auditory system. 
The discrete cosine transform of the real logarithm of the short-time energy spectrum 
expressed on this nonlinear frequency scale is called the MFCC. Davis and Mermelstein [5] 
showed the MFCC representation to be beneficial for speech recognition. We detail the 
MFCC as follows [8]: 

  



Let  denote the  samples of a speech waveform.  The discrete Fourier 
transform (DFT) X[k] of the speech signal is defined by 
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The MFCC is then the discrete cosine transform of the M filters outputs: 
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For speech recognition, normally, the number M  of filters is from 10 to 20 and the 
MFCC produced from the first few filters are the most effective in recognition.  In our 
experiment, we use 12=M  

3.3 Linear Predict Coding Cepstrum (LPCC) 

     The MFCC was proved to be better than the LPC cepstrum for recognition by using 
the dynamic time warping (DTW) method [5], but the computational complexity for the 
MFCC is much heavier than that of the LPC cepstrum.  The LPC coefficients can be 
easily obtained by Durbin's recursive procedure [11-13] and their cepstra can be quickly 

  



found by another recursive equations [11-13] without computing the discrete Fourier 
transform (DFT) and the inverse DFT, which are computationally complex and time 
consuming. 

The LPC method can also provide a robust, reliable and accurate method for 
estimating the parameters that characterize the linear and time-varying system [3, 11-13].  
The following is a brief discussion of LPC method.  It is assumed [13] that the sampled 
speech waveform  can be linearly predicted from the past  samples of . Let )(ˆ ns p )(ns
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The unknown k = , are called the LPC coefficients and can be solved by the 
least square method. The most efficient method known for obtaining the LPC coefficients 
is Durbin's recursive procedure [3, 11-13]. Here in our experiments, , because the 
cepstra in the last few elements are almost zeros. 
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     Both LPCC and MFCC are the method to compress or simplify the huge speech data 
 of a syllable into a simple data without loss of speech information.  The LPCC is 

more or less like the sufficient statistics of a random samples in statistics [14]. The LPC 
coefficients , , are actually the least squares estimators of the regression 
coefficients, i.e., the minimum variance linear estimators  of the regression 
coefficients [14]. The huge data of a frame are well-represented by the LPC coefficients 
unless LPC coefficients are too small, i.e., the estimates  of the regression coefficients 
are not significant as compared with noise. On the other hand, to produce a MFCC, one 
has to obtain the DFT of a frame of the huge data and after the Mel filter banks smooth the 
spectrum, performs the inverse DFT on the logarithm of the magnitude of filter bank 
output. It seems to us that the formula in (3.1)-(3.5) to produce a MFCC are a little 
arbitrarily or artificially or experimentally adjusted for human ears.  There is no 
theoretical theory to support the MFCC to well represent a syllable without loss of 
information.  Hence in this paper, we create a huge database from common mandarin 
sentences to obtain the recognition rates using the LPCC and MFCC respectively. 
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3.4 Feature Extraction [9] 

     Our method to extract the feature from LPCC (MFCC) is quite simple.  Let 
, be the LPCC (MFCC) vector of size  for the 

k-th frame of a speech waveform, where  is the length of the LPCC (MFCC) sequence 
and  is the number of LPC coefficients in each frame.  Normally, if a speaker does 
not intentionally elongate pronunciation, a mandarin syllable has 30-70 vectors of LPCC 
(MFCC). 

p1

  



Since an utterance of a syllable is composed of two basic parts: stable part and 
feature part. In the feature parts, the vectors have a dramatic change between two 
consecutive vectors, representing the unique characteristics of the syllable utterance and in 
the stable parts, the vectors stay about the same.  Even if the same speaker utters the 
same syllable, the duration of stable parts of the sequence of LPCC (MFCC) vectors 
changes every time with nonlinear expansion and contraction and hence the duration of the 
portion of feature vectors and duration of stable parts are different every time. Therefore, 
the duration of stable parts is contracted such that the compressed speech waveform has 
about the same length of the sequence of the vectors. Li [9] proposed several simple 
compression techniques to contract the stable parts of the sequence of vectors.  We state a 
simple one with good recognition rate as follows: 
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In order to accurately identify the syllable utterance, a compression process must first be 
performed to remove the stable and flat portion in the sequence of vectors.  A LPCC 
(MFCC) vector is removed if its absolute difference  from the previous vector 

 is too small.  In this study, a squared difference criterion is also used to 
remove the stable and flat portion of the sequence.  The criterion is expressed as 
follows: 
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<Let =′ , be the new sequence of LPCC (MFCC) vectors after 
deletion. We think that the first part (about first 40 vectors) of an utterance of a mandarin 
syllable contains main features which can most represent the syllable and the rest of the 
sequence contains the "tail" sound, which has a variable length.  If a speaker 
intentionally elongates pronunciation of a syllable, the speaker only increases the tail part 
of the sequence. The length of the feature part stays about the same. As in [9], we 
partition the feature part (first 40 vectors of the new sequence) into 8 equal segments and 
partition the tail part with variable length into two equal segments.  If the length of the 
new sequence of vectors representing a syllable is less than 40, we neglect the tail sound 
and partition the new sequence into 10 equal segments.  The average value of the LPCC 
(MFCC) in each segment is used as a feature value. Note that the average values of 
samples tend to have a normal distribution.  This compression produces 12×10 feature 
values for each mandarin syllable. 

4. Experimental Results 

There are two speech recognitions implemented in our study.  One is the digit 
recognition in a noisy environment and the other is the speech recognition on the 
mandarin monosyllables which are most commonly used in general conversations. 

  



The following is a flow chart to show the speech recognition on a syllable. 

In put sample of 
unknown syllable 

speech 
waveform 

Receiver A/D  
Converter 

Compute LPCC and MFCC 
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Compare LPCC and MFCC 
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Syllable 
identification 
by Bayes rule 

Figure 1. Flowchart of a syllable recognition 

Database containing 
means and variances of 
LPCC and MFCC of all 
known syllables 

Pre-Processing delete 
noise 

 

4.1 The Digit Recognition 

The digit recognition is implemented in a noisy environment, a classroom with 
windows open, which has noise from students inside classroom and from students and 
autos on the street outside classroom.  The database of 10 mandarin digits is created by 
19 persons (9 female and 10 male students) who pronounce 10 digits (0-9) once.  The 
speech signal of a mandarin monosyllable is sampled at 10 .  A Hamming window 
with a width of 25.6 ms is applied every 12.8 ms for our study. A 256 point Hamming 
window is used to select the data points to be analyzed. 

kHz

c c

In our experiments, we use this database to produce the LPCC (MFCC) and obtain 
a 12×10 matrix for each digit sample.  On the average, the time to produce a MFCC 
using DFT and formula in Section 3.2 is 5.5 times as much as to produce a LPCC.  
Among 19 samples (pronounced by 19 students) of each mandarin digit, pick up one 
sample (from one student) for recognition and the rest of 18 samples (from the other 18 
students) of the digit is used for training, i.e., the rest of 18 samples of this digit is used to 
estimate the parameters which represent the digit. Hence each of 19 students has to be 
tested, i.e., there are 19 testing samples for each digit. 

Since the average value of samples tends to be normally distributed.  In order to 
reduce computation for classification, we assume that all elements in the 12×10 matrix of 
feature values are stochastically independent.  It was proved [15] that using weighted 
variance in the Bayes decision rule for each class may increase the recognition rate.  
Hence, the conditional normal density given syllable  with weighted variance  can 
be represented as 

i
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where k=12×10 and  is a weighted factor for the variance.  Taking 
logarithm on both sides of (4.1), the Bayes decision rule (2.3) with equal prior on each 
syllable becomes 
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The Bayes decision rule (4.2) decides a syllable  with the least  to which the 
feature matrix  belongs.  For the Bayes decision rule, 18 samples of the 
syllable  are used for estimating its mean 
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     Note that in the Bayes decision rule, a matrix of feature values representing the 
testing digit pronounced by one student is compared with 10 matrices of means 
representing 10 digits' parameters. The means are computed from the feature values 
pronounced by the rest of 18 students.  Hence the feature values of the digits 
pronounced by the student to be tested are independent of the feature values of the digits 
pronounced by the other 18 students and in the training data to produce 10 matrices of 
means (each matrix represents one digit's parameters il 1012 ..., ,1 ×==μ , kl ), the 
feature values of 10 digits between any two persons of the other 18 students are mutually 
independent. Therefore, the Bayes rule uses simple normal distributions.  Table 4.1 
shows that the number of correct digits of 190 testing samples and the recognition rates 
are obtained using LPCC and MFCC features with absolute difference and squared 
difference criteria. 

Table 4.1  Correct digit recognition rates 

           absolute difference criterion squared difference criterion 

 LPCC MFCC LPCC MFCC 

total testing samples = 190 

181 178 182 179 19 students 
 
 (95.3%) (93.7%) (95.8%) (94.2%) 

total testing samples = 100 

100 96 100 96 10 students 
(pronounce most 
clearly) (100%) (96%) (100%) (96%) 

 

     Table 4.1 also shows the misclassified digits pronounced by the 10 students who 

  



pronounce most clearly and distinctly.  Since all mandarin syllables are monosyllables, 
the speech wave for each monosyllable is short. If the monosyllables are not pronounced 
clearly, it is difficult to recognize by the human ear.  Hence, to test the recognition 
ability of the Bayes decision rule, which should not be damaged by the ambiguous 
pronunciation, we select 10 students (4 female and 6 male) among 19 students, who 
pronounce most clearly and distinctly.  As in the first speech experiment, 10 digits 
pronounced by each student are used for testing and 90 samples (9 samples for each digit) 
from the other 9 students are used for training the means and the variances of each digit. 
There are 10 testing samples for each digit.  From the classification in digits, the LPCC 
for speech recognition is lightly better than the MFCC for two criteria (absolute and 
squared differences).  After compression of a sequence of LPCC and MFCC vectors, the 
two compression criteria give about the same recognition rates, but the squared 
difference criterion takes less time to compute.  The same speech recognition 
experiment was implemented in a quiet environment [15] and gave the correct digit 
recognition rate 98.6%.  For the robustness to the noise, our results show that the LPCC 
gives a recognition rate no less than the MFCC.  This contradicts to the results obtained 
by Davis and Mermelstein [5] in a quiet environment. 

4.2 The Speech Recognition 

In this speech recognition experiment, 87 students participate in the experiment. 
Each pronounces loudly and clearly several sentences of mandarin syllables, which are 
commonly used in the usual conversation in our life.  We cut these sentences into single 
words (syllables). We select the syllables which have at least 9 samples, i.e., each 
syllable as a candidate for speech recognition should appear in the sentences at least 9 
times.  Hence there are 102 different syllables to be classified. The 102 syllables appear 
in the sentences from 9 to 45 times. There are totally 1644 samples for 102 syllables to be 
tested. This experiment is designed as in the digit recognition in the first experiment.  
Each of 1644 samples is tested and the other 1643 samples are used for training, i.e., the 
syllables with 9 samples have 8 samples for training and the syllable with 45 samples has 
44 samples for training.  To compress the speech wave of a syllable into a 12×10 matrix 
of feature values, we only use the absolute difference criterion, since in the first 
experiment on digit recognition, there are no difference on recognition rates between the 
absolute difference and the squared difference criteria.  The simplified Bayes decision 
rule with and the weighted factor 102=m 2.1=c in (4.1) and (4.2) is used to classify 
102 different mandarin syllables. Table 4.2 shows the results. The table shows that the 
LPCC feature has the recognition rate 0.9057 better than the rate 0.8102 obtained by the 
MFCC feature. The total time needed to compute the MFCC of 1644 samples based on 
the formula in Section 3 is 5.5 times as much as that needed to compute the LPCC of the 
same 1644 samples. 

     Both recognition rates are not high enough, since some syllables having only 8 
samples for training have poor rates. Hence we increase the minimum number of samples 
for training to 10, i.e., we select the syllables from the sentences, which should have at 
least 11 samples (to appear at least 11 times in the sentences) as candidates for speech 
recognition. This restriction results in 91 different mandarin syllables with a total 1523 
samples to be tested in speech recognition, i.e., each of 1523 samples is used for testing 
and the remain of 1522 samples are used to train 91 different syllables.  The recognition 
rates are increased to 0.9140 for the LPCC and 0.8188 for the MFCC. The recognition 
results for 91 syllables are shown in Table 4.2. 

  



     The above recognition rates all show that the LPCC features a little higher than the 
MFCC. Hence we make a statistical hypothesis testing in our study.  We adopt two 
nonparametric methods (McNemar test and Cochran Q-test) [16] to test if the LPCC is 
better than the MFCC.  The McNemar test is to compare two rates provided by the 
LPCC and MFCC individually.  We obtain the approximate standard normal z-value 
7.4593 for 102 syllables and 7.3899 for 91 syllables. Both are strongly significant at the 
level 0001.0=α . 

The Cochran Q-test is to compare two features (MFCC and LPCC) if they are 
equally effective in classification.  We obtain the approximate Chi-square (df =1) Q 
value 55.6411 for 102 syllables and 54.6104 for 91 syllables, which are both strongly 
significant at the level 0001.0=α .  Both tests show in Table 4.3. Obviously, the two 
nonparametric tests make a decision to favor the LPCC. 

Table 4.2 Correct syllable recognition rates pronounced by 87 students 
 

features LPCC MFCC 

total samples=1644 for 102 different syllables 

correct samples 1489 1332 

correct rates 90.57% 81.02% 

total samples=1523 for 91 different syllables 

correct samples 1392 1247 

correct rates 91.40% 81.88% 
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Discussions and Conclusion 

In this paper, we have used two speech recognition experiments to test if the LPCC 
feature has a higher ability in classification of the mandarin monosyllables than the 
MFCC.  The speech waveform of a mandarin syllable is extracted into a sequence of 
LPCC (MFCC) vectors and the sequence of vectors is then compressed into a matrix of 
LPCC (MFCC) values, which tend to have a normal distribution.  Using the Bayes 
decision rule, we have found that in the first digit experiment, the mandarin digit 
recognition rate using LPCC feature is no less than the rate using the MFCC feature. In 
the second speech recognition experiment, we build a large amount of mandarin syllables, 
which are the most commonly used in usual conversations. From the nonparametric 
statistical analysis, the LPCC has a significant higher ability in classification than the 
MFCC.  Furthermore, the LPCC feature needs much less computational time to be 
extracted from speech signal waveform than the MFCC. 
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