
A Three-Phase System for Chinese Named Entity Recognition

Conrad Chen

Department of Computer Science and
Information Engineering, National
Chiao Tung University, Hsinchu
drchen@csie.nctu.edu.tw

Hsi-Jian Lee

Department of Medical Informatics,
Tzu Chi University, Hualien

hjlee@mail.tcu.edu.tw

Abstract. The handling of out-of-vocabulary (OOV) words is one of the key points
to a high performance lexical analysis in natural language processing. Among all OOV
words, named entities (NE) are the most productive ones. They generally constitute the
most meaningful parts of sentences (persons, affairs, time, places, and objects). In this
paper, we propose a three-phase “generation, filtering, and recovery” system to address
the NER problem. A set of stochastic models is first used to generate all possible NE
candidates. Then we treat candidate filtering as an ambiguity resolution problem. To
resolve ambiguities, we adopt a maximal-matching-rule-driven lexical analyzer. Last, a
pattern matching method is applied to detect and recover abnormalities in the results of
the previous two phases.

Pure lexical information is exploited in our system. We get a high recall of 96%
with personal names (PER), satisfiable recall of 88%, 89%, and 80% with transliteration
names (TRA), location names (LOC), and organization names (ORG), respectively. The
overall precision and excluding rate is over 90% and 99%.

1. Introduction

Words are generally the basic unit to process natural languages. However, in Chinese, sentences are
composed of string of characters without any delimiters to mark word boundaries. To process Chinese,
sentences must be segmented into word sequences first. Most Chinese language processing systems
rely on lexicons to recognize words in sentences. Because the number of Chinese words is tremendous,
it is impossible to compile all words in a lexicon. Therefore, word segmentation processes often
encounters the problem of out-of-vocabulary (OOV) words.
Among all OOV words, named entities are one of the most important sorts. It is impossible to list them
exhaustively in a lexicon. They are the most productive type of words. Nearly no simple or unified
generation rules for them exist. Besides, they are usually keywords in documents. Named entity
recognition (NER) thus becomes a major task to many natural language applications, such as natural
language understanding, question answering, and information retrieval.
Many researches have addressed the NE recognition problem in Chinese since 1990. Most of them
focused on some specific types as personal names �[5]�[13], location names �[9], organization names
�[10], and transliteration names �[11]. There are also type-independent approaches of NER. However,
most of these approaches need type-dependent data such as role tags. Type-independent approaches
can be roughly divided into two major sorts: over-generating & disambiguating �[3]�[12] and
over-segmenting & generating �[4]�[8].
Generally speaking, there are two main approaches of the above studies, rule-based models and
machine learning methods. Rule-based approaches could effectively exploit human knowledge and can
be tuned conveniently. On the other hand, machine learning approaches, such as maximum entropy or
support vector machine, is more independent from languages and simple to implement. Rule-based
approaches is slightly outperform machine learning ones in MUC-7 tests �[2].
In our consideration, rule-based approaches are more reasonable than machine learning ones. Boosting
performances of rule-based approaches is easier than improving machine learning abilities. Therefore,

rule-based approaches is adopted in this paper, while machine learning methods still could be
incorporate in our system under the present framework in future.
A three-phase “generation, filtering, and recovery” system is proposed to solve NER problem. In the
generation phase, stochastic models are responsible for generating all possible candidates of different
kinds of named entities in input documents. In the filtering phase, we treat the filtering of false
candidates as an ambiguity resolution problem. A maximal-matching-rule-driven lexical analysis is
performed to resolve ambiguities caused by false candidates. In the recovery phase, a rule-driven
pattern matching method is applied to detect and recover abnormalities in the results of the previous
two phases.

2. System Overview

In our system, we try to make use of both the tunability of stochastic models in candidate extraction
and the power of lexical analyzers in disambiguation. To implement this idea, we propose a three-phase
framework: candidate generation, filtering, and recovery, as shown in Figure 2.1:

Three-Phase NE
Recognition System Candidate Generator

Lexical Analyzer

Segmentation
Checker

Input
Document Lexicon

Candidate Pool

Segmentation
Result

Statistical
Data

Phase 1

Phase 2

Phase 3

Fig. 2.1. An overview of our system

In the first phase, all possible candidates of various kinds of named entities in the input document are
extracted. Notice that this process is inevitably both over-generating and under-generating. Because of
the filtering process, the candidate extracting can be tuned to have a higher recall and to sacrifice
precision a little for a moment.
Statistical approaches are adopted in the candidate generation phase. The reason is that names are given
by people. Therefore, there is no exact answer if a string is a name or not. The only thing can be judged
is how likely the string is to be a name. As for computers, to estimate the likelihood of names is
basically a fuzzy problem. If a character is more likely to appear in a name, it has a better fuzzy value.
The detail of how fuzzy logic and statistic estimation are applied will be discussed later.
The second phase of the system is false candidate filtering. How do we verify which candidates are
true named entities and which ones are false? False candidates are either a common word or composed
of fragments of common words and named entities. The first case has less impact on subsequent
applications. The second case usually results ambiguous segmentations. Verification of these
candidates could be viewed as an ambiguity resolution problem. If we can judge which segmentation is
correct or more proper, we could also verify which candidates are true named entities.
Because of the regularity of lexical choices in modern Chinese, many simple approaches of
segmentation ambiguity resolution have good performances. No matter what simple methods it takes,
heuristic rules or stochastic estimations, if there are no OOV words, most lexical analysis methods
show great precision in ambiguity resolution. That is to say, if we got a high recall in the extraction of
NE candidates, most of the segmentation ambiguities caused by false candidates are supposed to be
resolved by conventional word segmentation methods. We choose a heuristic approach, which is
mainly driven by maximal matching rules, to resolve segmentation ambiguities.
The third phase of the system is recovery. The recovery mechanism is used to revive some obviously
incorrect results of the first two phases. There are two major target types to be recovered:
over-segmentations caused by under-generation and under-segmentations caused by over-generation.

Through the detection of these anomalies, e.g. a succession of single-character words indicating
over-segmentations, part of un-extracted named entities could be revived.

3. Candidate Generation

The candidate generator is used to extract all possible named entity candidates in input documents.
There are four layers in the candidate generator to handle four sorts of NEs: close-ended NEs, genuine
names, whole named entities, and abbreviations.

Abbreviation Candidate Generation Model

Close-ended NE Recognition Model

Abbreviation Candidates

Genuine Name Candidates Recognition Model

Chinese Personal Name
Model

Organization Name
Model

Location Name
Model

Transliteration Name
Model

Close-Ended NE Candidates

Added
into
can-
didate
pool

Whole NE Candidates Recognition Model

Lexicon Statistical
Data

Input
Document

Genuine Name Candidates

Whole NE Candidates

Candidate Generator

Fig. 3.1. The overview of the candidate generator

Close-ended named entities comprise time and quantity expressions. Since the extraction of
close-ended NEs is not the focus of this paper, and previous researches �[6] have solved this problem
well, a single simplified rule is applied to recognize most of them in our system. The rule is as follows:

[“ ”] + (Numerals)+ + [Qualifier] + [Unit]

This simple rule cannot cover all close-ended NEs, of course. The purpose of this rule is just to prevent
unrecognized close-ended NEs affect the performance of the recognition of open-ended ones.
In general, the structure of whole open-ended NEs except for abbreviations can be represented as:

[prefixes] + genuine name + [suffixes]

For example, “ ” is a genuine name and “ ” is a whole named entity with suffix “ ”
indicating that “ ” is a city. The handling of prefixes is much similar to that of suffixes, and on the
other hand prefixes are much more rarely seen than suffixes. Therefore, for simple implementation,
whole NEs with prefixes would not be recognized in our system.
Suffixes generally indicate the type of named entities. There are many types of named entities with
different suffixes. Many sorts of them rarely appear in the document. It is not worth to build models for
each type of these names. However, suffixes are strong features. It is easier to recognize them, and
chances of error recognition are comparatively low. Therefore, a compromised method is adopted that
only models for four kinds of genuine names are implemented at present in our system. They are
personal names, transliteration names, location names, and organization names. These four kinds of
genuine name candidates would be used to form various types of NEs with corresponding suffixes. For
instance, if a personal name candidate is followed by a publication suffix, they will be recognized as a
whole publication name, like:

“ ”(personal name) + “ ”(publication suffix) � “ ”(publication name)

For the same reason above, all NE suffixes are roughly classified into three categories: ones with
similar corresponding genuine name types to location suffixes, ones with similar corresponding
genuine name types to organization suffixes, and others. The first category covers all location names,
racial names, etc. The second one comprises all organization names except for racial names, facility
names, publication names, etc. The third one includes feat names, culture names, and so on. Among
these three categories, only the first two are addressed by our system. These two categories are called
“location-like NE” and “organization-like NE”. Names belonging to the same category will be

addressed by the same corresponding model. There are two main advantages following this way. First,
times spent on designing models and collecting data are saved. Second, confidences brought by
suffixes could alleviate the deviation on statistics brought by a compromised approach. The extraction
of genuine names and whole named entities will be detailed later.
Open-ended named entities extracted above are used to find possible abbreviations and some
rule-recognizable aliases in the abbreviation generation model. Four simple rules are adopted to
complete this job:

Rule 1: Take the first characters of genuine name and all suffixes other than typing suffix, and the
last character of typing suffix from NE candidates (e.g. “ ” � “ ”)

Rule 2: Surnames of personal name candidates (e.g. “ ” � “ ”)
Rule 3: Given names of personal names (e.g. “ ” � “ ”)
Rule 4: Modifier + Surname or any character of Given names (e.g. “ ” � “ ”, “ ”,

“ ”, etc.)
Notice that only abbreviations and aliases with original names appearing in the document could be
addressed by our system.

3.1. Statistic Estimation

The recognition of genuine names is basically a fuzzy decision problem to computers. There is no exact
right or wrong answer for a string to be a name. The only problem is how likely it is. Fuzzy values
represent strings’ likelihood or properness to be a name. Since Chinese is a character-based language,
methods of estimating fuzzy values are generally also character-based. Names are composed of several
characters. There are several ways to transform the member characters’ fuzzy value to the string’s
fuzzy value.
Stochastic language models are usually adopted to estimate the likelihood of a candidate to be a named
entity. The fundamental principle is that the string with a higher probability or frequency to be a name
has a higher fuzzy value or likelihood. There are several ways to estimate the fuzzy value of a string
from the statistic data based on characters. These models include Markov models, bi-gram models,
unigram models, etc.
Each model has its advantages and disadvantages. Generally speaking, more complex the model is,
more precisely it estimate, and more training data it needs. Besides that, the data-sparseness problem is
more likely to happen. Since the amounts of features of different types of named entities are varied,
each type has its own best-fit model. In this paper, to simplify data collecting and training, unigram
models are adopted. Additionally, some supplementary information such as positional feature is
exploited to support statistical models.
Generally there are two major ways to estimate fuzzy values of a single character:

Frequency: freq(typ|c)=counts(typ, c)
Probability: prob(typ|c)=counts(typ, c)/counts(c)=freq(typ|c)/counts(c)

Frequencies stand for differences among naming-characters. They represent popularities of characters
to be used in names of some type. If some character is used in more names, it has a higher frequency. If
frequencies are used as fuzzy values, a higher recall will be obtained with common names.
Probabilities stand for differences among all characters. They represent possibilities of characters to be
used in a name of some type. If some character appears more frequently in names than in common
words, it has a higher probability. If probabilities are used as fuzzy values, a higher precision and a
higher recall will be obtained with rare names. However, it has a lower recall with common names
comparing with using frequencies.
A hybrid statistics is adopted in our system to take advantages of both frequencies and probabilities.
With common naming-characters, frequencies are adopted to get a higher recall with common names.
With rare naming-characters, probabilities are adopted to complement frequencies’ insufficiency with
rare names. The resulting model looks like:

� (typ|c) = Max{ freq(typ|c), prob(typ|c) }

Data sparseness and reappearances of names make it hard to estimate probabilities. To overcome these
difficulties, we propose to use inverse common frequencies to approximate probabilities:

icf(c)=1/(freq(common word|c)+1)=1/(counts(common word, c)+1)

Since probabilities are mainly used to estimate the probability of rarely seen events, usually:
counts(common words, c) � counts(~typ, c),where counts(typ, c) � 2

In this case, icf(c) is approximate to prob(c):

prob(c) = counts(typ,c)/(counts(typ,c)+counts(~typ,c)) where counts(typ,c) � 2
� 1/(counts(~typ,c) + 1) � icf(c)

Further, we assume that counts(common word, c) is in direct proportion to the number of lexicon
entries in which the character c appears. Under these assumptions, we use inverse lexicon counts to
approximate probabilities:

ilc(c) = 1/(Num_of_Lex_Entries(c)+1) � icf(c) � prob(typ|c)

Because ilc(c) is ranged from 0 to 1, freq(typ|c) also needs to be normalized to 0 to 1. The distribution
of raw data of freq(typ|c) is conformed to Zipf’s Law, that:

Pn � 1/na, where Pn is the frequency of occurrence of the nth ranked item and a is close to 1.

Values with often seen characters are too high and the distinctions among low frequency characters are
not wide enough. Therefore, a logarithm function is taken on the raw data to smooth the distribution
curve, and then the result is normalized to 0.1 to 1.

)))|((log()|(*
1,1.0

ctypfreqNormctypfreq = while freq(typ|c) � 1

Notice that the lower bound of freq*(typ|c) is set to 0.1, not 0. This is because the meaning of events
that appear once is greatly different from the meaning of unseen events.
The final character likelihood model looks like:

�(typ|c) = Max{ freq*(typ|c), ilc(c) }

Notice that there are two exceptions to this model. With surnames and transliterating characters,
likelihoods of unseen events in training data are assigned to zero. This is because generally surnames
and transliterating characters are not arbitrarily given. Probabilities of most characters to be surnames
or transliterating characters are actually zero. The original model might cause unnecessary
over-generation. To prevent this problem, only surnames and transliterating characters appearing in our
training data are adopted as possible ones.

3.2. Open-ended Named Entity Extraction

Open-ended named entity extraction models would estimate likelihoods of strings to be some type of
named entity from character likelihoods. Unigram models are adopted as the basis of our models. They
could be represented as follows:

��*(typ|g s) = ��(typ|g) ConRe(g) ConSuf(typ, s)
where g denotes the genuine name and s denotes the suffix part

If ��*(typ|g s) is over some pre-defined threshold, which is decided by maximizing the f-measure of
the recall of training data and the excluding rate of lexicon entries, g s would be recognized as a
possible candidate and added into the candidate pool. Each member of the formula is detailed below:
� ConRe(g) estimates the confidence could be brought by reoccurrences of the genuine name, which

is defined as:
ConRe(g)= kReoccurrence(g)

2
when the length of the input document is
less than 400 characters k =

�
�
�

1+400/LEN(Document) Elsewhere

� ConSuf(typ|s) estimates the confidence could be brought by the suffix part. Different types of
suffixes could bring different quantities of confidence. One suffix part might comprise many
different suffixes. The summation of each member’s confidence is computed:

ConSuf(typ, s) = Conf(typ1, s1) + Conf(typ2, s2) + … + Conf(typn, sn) + 1 where s = s1s2…sn

Notice that if s is empty, i.e., there are no suffix parts, ConSuf(typ, s) would be 1.
� The definition of� �� (typ|g) is varied from different types of genuine names. As we mentioned

before, there are four types of genuine names that would be dealt by our system: personal names,

location names, organization names, and transliteration names. �� (typ|g) of different types of
names is defined as follows:
� ��(PER|s) =ArgMax {��(SUR|s1) *��(GIV|s2) } for every substring s1 and s2,

where s= s1 s2, “ ” denotes the string concatenation, and:

��(SUR|c1) when s is constituted
of one character

Max{GAvg(��(SUR|c1),��(SUR|c2)),� (SUR|c1c2)}
when s is constituted
of two characters

��(SUR|s) =
�
�

�
�

�

0
when s is longer
than two characters

��(GIV|c1) when s is constituted
of one character

GAvg(��(GIV|c1), ��(GIV|c2))
when s is constituted
of two characters

��(GIV|s) =
�
�

�
�

�

0
when s is longer
than two characters

GAvg() returns geometric means.

� �(TRA|s) = HAvg(��(TRA|ck)) where s=c1…cn and HAvg() returns harmonic means.
��(LOCL|c1) * � (LOCF|c2) when s = c1c2
��(LOCL|c1) * � (LOCF|c2)* � (LOCF|c3) when s=c1c2c3 � � � (LOC|s) =

�
�
�

0 elsewhere
��(ORGL|c1) * � (ORGF|c2) when s = c1c2
��(ORGL|c1) * � ORGL|c2)* � (ORGF|c3) when s=c1c2c3 ��(ORG|s) =

�
�
�

0 elsewhere

3.3. Supplementary Mechanism

Besides the above models, there are three supplementary mechanisms designed to relieve
over-generation problems of stochastic models:

1. If some candidate is constituted of two multisyllabic words or one multisyllabic word and one
often seen monosyllabic word, this candidate would be removed from the candidate pool.

2. If the first or the last character of some three-character-long organization name candidate is a
monosyllabic word that often appears adjacent to a name, as “ ” and “ ”, this
candidate will be removed from the candidate pool.

3. With transliteration names, sometimes a common word might be wrongly attached by a
transliteration candidate. In this situation, maximal-matching-rule-driven lexical analyzer cannot
filter it out properly.
A concept called “team” based on reoccurrences is introduced to solve the attaching problem.
Basically, all substrings of possible transliteration name candidates are also possible candidates.
Hence all transliteration name candidates can be grouped into teams according to their longest
common superstring candidate. For example, a team can be represented as:

Tleader= = { (5), (5), (6), (4), (5), (4)}

Where all appearance times of candidates are marked up, and superstring “ ” is called
the “leader” of the team.
The following algorithm is then applied:
I. Subtract leader’s appearance times from each team member
II. If the leader could be split into candidates with non-zero appearance times after subtraction

and multisyllabic common words or frequently used monosyllabic words, discard the leader
and members whose appearance times being subtracted to zero

III. Form new teams comprised of remaining candidates with new leaders
IV. Repeat step I~III, until no candidates could be discarded

4. Lexical Analysis

The lexical analyzer is responsible for verifying candidates generated by the candidate generator.
Heuristic rules are adopted to filter out false named entity candidates and resolve ambiguities caused by
false candidates. There are six heuristic rules applied in order precedence:
Rule 1: Tri-word maximal matching, which is proposed by Chen & Liu (1992) �[1]. The rule follows

below three steps:
1. From the segmenting point, look forward for all possible tri-word combinations.
2. Take the first word of the longest sequence of all, segment this word.
3. Move to the next segmenting point.

For example, with the sentence “ ”, “ ” would be picked instead of “
” because “ ” is longer than “ ”.

Rule 2: Least number of NEs first, which would pick the tri-word sequence with the least number of
named entities among all sequences of the same length.

Rule 3: Most frequently appearing NEs first, which would pick the tri-word sequence with the most
appearing times of component NEs in the input document.

Rule 4: Words of even lengths first, which would choose the sequence with most words of even
lengths. There are several exceptions to this rule. First, personal names, transliteration names,
and numerical expressions are not concerned in this rule. Second, the often seen monosyllabic
words, like “ ”, “ ”, “ ”, etc., are viewed as words of even lengths instead. For example,
“ ” is regarded as totally having two words of even lengths, one is “ ” and
another one is “ ”, not “ ”. Third, the suffix part of a whole named entity is not
considered into the length of it. For example, “ ” is viewed as a word of even
lengths, not of odd ones.

Rule 5: Often seen monosyllabic words first, which is also proposed by �[1], would pick the sequence
with the most often seen monosyllabic words.

Rule 6: Forward precedence, which would choose the tri-word sequence with longer forward words.
For example, with two ambiguous tri-word sequence “ ” and “ ”,
the former would be picked since “ ” is longer than “ ”.

In order to measure the performance of our lexical analyzer on ambiguity resolution, the test samples of
our system (61 news articles from United Daily News and Central News Agency, which will be further
discussed later) are examined. The following measurements are adopted:

� Ambiguous Tri-Word Sequences: # of all possible tri-word sequences which could not be
discriminated by the prior rules

� Resolved: # of tri-word sequences which could be filtered by the corresponding rule
� Errors: # of correct words which are wrongly filtered
� Applying Rate: Resolved / Ambiguous Tri-Word Sequences
� Accuracy: 1 – Errors / Resolved

The experimental results are listed in Table 4.1:

Table 4.1. The performance of heuristic rules in ambiguity resolution

5. Recovery

The recovery mechanism would revive obvious incorrect results of segmentations which are not
suitable to be solved by priority-style rules. These anomalies mainly comprise two situations: over-
segmentations caused by under-generation, and under-segmentations caused by over-generation. The
segmentation checker would find suspect segmentation sequences and try to recover them.
To deal with over-segmentations, sequences of three or more seldom used monosyllabic words in a row
are suspected. These suspects are checked to see if any fragments of them could constitute NE
candidates with �(TYP|s) over a predefined suspect threshold of the corresponding type.
For example, since �(TRA|“ ”) = 0.43 < 0.51, the candidate threshold of �(TRA|s), the string is
usually segmented to “ ” in the first two phases. This suspect sequence will be detected by the
segmentation checker. Because �(TRA|“ ”) is larger than the suspect threshold of �(TRA|s),
which is set to 0.2 in our system, “ ” is added into the candidate list of transliteration names.
With personal names, there is another special case. Let us consider the personal name “ ”.
�(PER|“ ”) = 0.23 < 0.26, the candidate threshold of �(PER|s). However, �(PER|“ ”),
which equals 0.54, is larger than the candidate threshold. When this situation happens, the personal
name is usually incorrectly segmented into a personal name of two characters and a monosyllabic
word, such as “ ” in this case. To cope with this situation, the following sequence is also
viewed as suspects of over-segmentations:

two-character-long personal name candidate + seldom used monosyllabic word

On the other hand, to deal with under-segmentations, segmentation sequences constituted of interlaced
appearances of transliteration, location, organization names, and seldom used monosyllabic words, are
suspected. These sequences are attempted to be re-segmented into a new sequence containing one more
word than the original sequences. For example, if “ ” is incorrectly recognized as a location name,
the phrase “ ” would be wrongly segmented into a suspect sequence “ ”. This
sequence would be detected and re-segmented into the right sequence “ ”. If the
re-segmenting cannot be performed, the original sequence will be kept.
The procedure of segmentation checker is as follows:

1. Check over-segmented sequences
2. Check under-segmented sequences
3. Repeat step 2, until no new suspect sequences appear
4. Check over-segmented sequences again

6. Evaluation

To measure the performance of our system, a corpus which is balanced and well-tagged according to
our standard is needed. The most popular standard test corpus, MET-2 data, is biased on some special
topics and uses a different tagging standard from ours. Therefore, instead of a standard testing corpus,
we obtain 61 articles from United Daily News and Central News Agency as our test bed. These articles
are segmented and tagged by our system and corrected manually.
These 61 articles are gathered from five different domains. They are politics, society, business, sports,
and entertainment. Because the quantity of politics news and society news is more than others, we
obtain three different sub-topics (lawsuit, government, and election) from politics news and two (crime
and local) from society news.
Table 6.1 draws the experimental results of our system. Standard measurements are estimated:

Recall = (# of Ext. – # of False)/(# of True)
Precision = 1 - (# of False)/(# of Ext.)

Notice that there are two special columns in the table, number of words and excluding rate. Because
appearing frequencies of NEs are varied in different domains and have a great impact on precision,
precision is thus less meaningful. We consider that excluding rate might be a better measurement of
over-generation. Excluding rate is counted from:

Excluding rate = 1 - (# of False)/(# of Words - # of True)

It stands for the percentage of non-NEs being correctly filtered by our system.

Table 6.1. Experimental results of our system

Table 6.2 shows the recall of different types of NE. Because we do not focus on automatic
classification, one NE might be recognized by many different models, it’s hard to judge the precision
of each type and only the recalls are listed here.

Table 6.2. Recall of our system with different types of NEs

Notice that the first five columns (PER, TRA, LOC, ORG, ABB) only include the focused types of our
system. Column PER comprise only formal Chinese personal names and personal names with
appellations. Other personal names, such as Japanese name “ ” and pseudonym “ ”, are
counted in the column PO instead. Monosyllabic place names without suffixes, like “ ” and “ ”, are
recognized by lexicon matching and counted in the column LO. Government and team names are also
recognized by lexicon. They are viewed as OO. All other location names and organization names are
included in the column LOC and ORG respectively. Column ABB contains only abbreviations with
original reference in the input document, other abbreviations are considered as AO.

7. Conclusions and Future Works

Overall speaking, pure lexical information is employed to recognize named entities in our system. Only
statistical features and internal structures of NE are utilized. Our statistical model and heuristic rules
are simplified for easy implementation. However, our system gets a satisfied performance, and there
are still many rooms for improvement.

First, statistical models could be refined. More training data could be collected. More elaborate
candidate generating models could be adopted, such as bi-gram models. More internal features could
be exploited, such as positional information of characters. Contextual information, such as word
probability of being adjacent to some type of NEs, could be also added into our model.
Second, heuristic rules could be more completed or substituted by other mechanisms. Shortcomings of
heuristic rules form an upper-bound barrier of performances. More rules could be introduced to cover
the inadequacies of original ones. Other mechanism like statistical approaches could be used to replace
rule-driven methods.
Third, more candidate generating models could be added. Many types of NEs have not been addressed
in our system. We could find that these NEs occupy a great proportion of true negative errors. If these
NEs could be recognized, the recall of our system is supposed to be boosted.
Fourth, more knowledge could be gathered and utilized. The suffix and appellation information used in
our system is handcrafted at present. Bootstrapping or machine learning algorithm might help us
automatically retrieve these kinds of information from the Internet or corpus. Part-of-speech tagging,
syntactic checking and even semantic analysis might also be added into our future system.

References

[1] Chen, Keh-Jiann and S. H. Liu, 1992, “Word Identification for Mandarin Chinese Sentences,”
Proceedings of COLING-92, Vol. 1, pp. 101-107

[2] Chinchor, Nancy, 1998, “MUC-7 Test Score Reports for all Participants and all Tasks” in
Proceedings of the MUC-7.

[3] Chua, Tat-Seng and J. Liu, 2002, “Learning Pattern Rules for Chinese Named Entity Extraction,”
Proceedings of AAAI/IAAI 2002, pp. 411-418

[4] Goh, Chooi Ling, M. Asahara, Y. Matsumoto, 2003, “Chinese Unknown Word Identification
Using Character-based Tagging and Chunking,” ACL-2003 Interractive Posters/Demo, pp.
197-200

[5] Ji, Heng and Z. S. Luo, 2001, “Inverse Name Frequency Model and Rule Based Chinese Name
Identification,” (In Chinese) Natural Language Understanding and Machine Translation,
Tsinghua University Press, pp. 123-128.

[6] Mo, Ruo Ping, Y. J. Yang, K. J. Chen, and C. R. Huang, 1996, “Determinative- Measure
Compounds in Mandarin Chinese Formation Rules and Parser Implementation,” In C. R. Huang,
K. J. Chen and B. K. Tsou (Eds.), Readings in Chinese natural language processing, pp. 123-146,
Journal of Chinese Monograph Series Number 9.

[7] Sekine, Satoshi, K. Sudo, and C. Nobata, 2002, “Extended named entity hierarchy,” Proceedings
of the LREC 2002 Conference, pp. 1818-1824.

[8] Sun, Jian, J. F. Gao, L. Zhang, M. Zhou, and C. N. Huang, 2002, Chinese Named Entity
Identification Using Class-based Language Model,” Proceedings of the 19th International
Conference on Computational Linguistics, Taipei, pp. 967-973

[9] Tan. Hong-Ye, 1999, “Chinese Place Automatic Recognition Research,” Proceedings of
Computational Language, C. N. Huang & Z.D. Dong, ed., Tsinghua Univ. Press, Beijing, China.

[10] Wu, Xue-Jun, J. B. Zhu, H.Z. Wang, and N. Ye, 2003, “The Application of the Method of
Co-Training in Identification of Chinese Organization Names,” The 2003 National Joint
Symposium on Computational Linguistics (JSCL-2003)

[11] Xiao, Jing, J. M. Liu, and T. S. Chua, 2002, "Extracting pronunciation-translated names from
Chinese texts using bootstrapping approach", Nineteenth International Conference on
Computational Linguistics (COLING2002), Taipei, Taiwan, Aug 2002.

[12] Yu, Shi-Hong, S. H. Bai, and P. Wu, 1998, “Description of the Kent Ridge Digital Labs System
Used for MUC-7,” Proceedings of the Seventh Message Understanding Conference (MUC-7).

[13] Zheng, Chen, W. Y. Liu, and F. Zhang, 2002, “A New Statistical Approach to Personal Name
Extraction,” ICML 2002, pp. 67-74.

