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Abstract. The handling of out-of-vocabulary (OOV) words is one of the key points 
to a high performance lexical analysis in natural language processing. Among all OOV 
words, named entities (NE) are the most productive ones. They generally constitute the 
most meaningful parts of sentences (persons, affairs, time, places, and objects). In this 
paper, we propose a three-phase “generation, filtering, and recovery” system to address 
the NER problem. A set of stochastic models is first used to generate all possible NE 
candidates. Then we treat candidate filtering as an ambiguity resolution problem. To 
resolve ambiguities, we adopt a maximal-matching-rule-driven lexical analyzer. Last, a 
pattern matching method is applied to detect and recover abnormalities in the results of 
the previous two phases.  

Pure lexical information is exploited in our system. We get a high recall of 96% 
with personal names (PER), satisfiable recall of 88%, 89%, and 80% with transliteration 
names (TRA), location names (LOC), and organization names (ORG), respectively. The 
overall precision and excluding rate is over 90% and 99%.  

1. Introduction 

Words are generally the basic unit to process natural languages. However, in Chinese, sentences are 
composed of string of characters without any delimiters to mark word boundaries. To process Chinese, 
sentences must be segmented into word sequences first. Most Chinese language processing systems 
rely on lexicons to recognize words in sentences. Because the number of Chinese words is tremendous, 
it is impossible to compile all words in a lexicon. Therefore, word segmentation processes often 
encounters the problem of out-of-vocabulary (OOV) words.  
Among all OOV words, named entities are one of the most important sorts. It is impossible to list them 
exhaustively in a lexicon. They are the most productive type of words. Nearly no simple or unified 
generation rules for them exist. Besides, they are usually keywords in documents. Named entity 
recognition (NER) thus becomes a major task to many natural language applications, such as natural 
language understanding, question answering, and information retrieval.  
Many researches have addressed the NE recognition problem in Chinese since 1990. Most of them 
focused on some specific types as personal names �[5]�[13], location names �[9], organization names 
�[10], and transliteration names �[11]. There are also type-independent approaches of NER. However, 
most of these approaches need type-dependent data such as role tags. Type-independent approaches 
can be roughly divided into two major sorts: over-generating & disambiguating �[3]�[12] and 
over-segmenting & generating �[4]�[8].  
Generally speaking, there are two main approaches of the above studies, rule-based models and 
machine learning methods. Rule-based approaches could effectively exploit human knowledge and can 
be tuned conveniently. On the other hand, machine learning approaches, such as maximum entropy or 
support vector machine, is more independent from languages and simple to implement. Rule-based 
approaches is slightly outperform machine learning ones in MUC-7 tests �[2].  
In our consideration, rule-based approaches are more reasonable than machine learning ones. Boosting 
performances of rule-based approaches is easier than improving machine learning abilities. Therefore, 



rule-based approaches is adopted in this paper, while machine learning methods still could be 
incorporate in our system under the present framework in future.  
A three-phase “generation, filtering, and recovery” system is proposed to solve NER problem. In the 
generation phase, stochastic models are responsible for generating all possible candidates of different 
kinds of named entities in input documents. In the filtering phase, we treat the filtering of false 
candidates as an ambiguity resolution problem. A maximal-matching-rule-driven lexical analysis is 
performed to resolve ambiguities caused by false candidates. In the recovery phase, a rule-driven 
pattern matching method is applied to detect and recover abnormalities in the results of the previous 
two phases.  

2. System Overview 

In our system, we try to make use of both the tunability of stochastic models in candidate extraction 
and the power of lexical analyzers in disambiguation. To implement this idea, we propose a three-phase 
framework: candidate generation, filtering, and recovery, as shown in Figure 2.1:  
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Fig. 2.1. An overview of our system 

In the first phase, all possible candidates of various kinds of named entities in the input document are 
extracted. Notice that this process is inevitably both over-generating and under-generating. Because of 
the filtering process, the candidate extracting can be tuned to have a higher recall and to sacrifice 
precision a little for a moment.  
Statistical approaches are adopted in the candidate generation phase. The reason is that names are given 
by people. Therefore, there is no exact answer if a string is a name or not. The only thing can be judged 
is how likely the string is to be a name. As for computers, to estimate the likelihood of names is 
basically a fuzzy problem. If a character is more likely to appear in a name, it has a better fuzzy value. 
The detail of how fuzzy logic and statistic estimation are applied will be discussed later.  
The second phase of the system is false candidate filtering. How do we verify which candidates are 
true named entities and which ones are false? False candidates are either a common word or composed 
of fragments of common words and named entities. The first case has less impact on subsequent 
applications. The second case usually results ambiguous segmentations. Verification of these 
candidates could be viewed as an ambiguity resolution problem. If we can judge which segmentation is 
correct or more proper, we could also verify which candidates are true named entities.  
Because of the regularity of lexical choices in modern Chinese, many simple approaches of 
segmentation ambiguity resolution have good performances. No matter what simple methods it takes, 
heuristic rules or stochastic estimations, if there are no OOV words, most lexical analysis methods 
show great precision in ambiguity resolution. That is to say, if we got a high recall in the extraction of 
NE candidates, most of the segmentation ambiguities caused by false candidates are supposed to be 
resolved by conventional word segmentation methods. We choose a heuristic approach, which is 
mainly driven by maximal matching rules, to resolve segmentation ambiguities.  
The third phase of the system is recovery. The recovery mechanism is used to revive some obviously 
incorrect results of the first two phases. There are two major target types to be recovered: 
over-segmentations caused by under-generation and under-segmentations caused by over-generation. 



Through the detection of these anomalies, e.g. a succession of single-character words indicating 
over-segmentations, part of un-extracted named entities could be revived.  

3. Candidate Generation 

The candidate generator is used to extract all possible named entity candidates in input documents. 
There are four layers in the candidate generator to handle four sorts of NEs: close-ended NEs, genuine 
names, whole named entities, and abbreviations.  
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Fig. 3.1. The overview of the candidate generator  

Close-ended named entities comprise time and quantity expressions. Since the extraction of 
close-ended NEs is not the focus of this paper, and previous researches �[6] have solved this problem 
well, a single simplified rule is applied to recognize most of them in our system. The rule is as follows:  

[“ ”] + (Numerals)+ + [Qualifier] + [Unit] 

This simple rule cannot cover all close-ended NEs, of course. The purpose of this rule is just to prevent 
unrecognized close-ended NEs affect the performance of the recognition of open-ended ones.  
In general, the structure of whole open-ended NEs except for abbreviations can be represented as:  

[prefixes] + genuine name + [suffixes] 

For example, “ ” is a genuine name and “ ” is a whole named entity with suffix “ ” 
indicating that “ ” is a city. The handling of prefixes is much similar to that of suffixes, and on the 
other hand prefixes are much more rarely seen than suffixes. Therefore, for simple implementation, 
whole NEs with prefixes would not be recognized in our system. 
Suffixes generally indicate the type of named entities. There are many types of named entities with 
different suffixes. Many sorts of them rarely appear in the document. It is not worth to build models for 
each type of these names. However, suffixes are strong features. It is easier to recognize them, and 
chances of error recognition are comparatively low. Therefore, a compromised method is adopted that 
only models for four kinds of genuine names are implemented at present in our system. They are 
personal names, transliteration names, location names, and organization names. These four kinds of 
genuine name candidates would be used to form various types of NEs with corresponding suffixes. For 
instance, if a personal name candidate is followed by a publication suffix, they will be recognized as a 
whole publication name, like:  

“ ”(personal name) + “ ”(publication suffix) � “ ”(publication name) 

For the same reason above, all NE suffixes are roughly classified into three categories: ones with 
similar corresponding genuine name types to location suffixes, ones with similar corresponding 
genuine name types to organization suffixes, and others. The first category covers all location names, 
racial names, etc. The second one comprises all organization names except for racial names, facility 
names, publication names, etc. The third one includes feat names, culture names, and so on. Among 
these three categories, only the first two are addressed by our system. These two categories are called 
“location-like NE” and “organization-like NE”. Names belonging to the same category will be 



addressed by the same corresponding model. There are two main advantages following this way. First, 
times spent on designing models and collecting data are saved. Second, confidences brought by 
suffixes could alleviate the deviation on statistics brought by a compromised approach. The extraction 
of genuine names and whole named entities will be detailed later.  
Open-ended named entities extracted above are used to find possible abbreviations and some 
rule-recognizable aliases in the abbreviation generation model. Four simple rules are adopted to 
complete this job:  

Rule 1: Take the first characters of genuine name and all suffixes other than typing suffix, and the 
last character of typing suffix from NE candidates (e.g. “   ” � “ ”)  

Rule 2: Surnames of personal name candidates (e.g. “ ” � “ ”)  
Rule 3: Given names of personal names (e.g. “ ” � “ ”)  
Rule 4: Modifier + Surname or any character of Given names (e.g. “ ” � “ ”, “ ”, 

“ ”, etc.)  
Notice that only abbreviations and aliases with original names appearing in the document could be 
addressed by our system.  

3.1. Statistic Estimation 

The recognition of genuine names is basically a fuzzy decision problem to computers. There is no exact 
right or wrong answer for a string to be a name. The only problem is how likely it is. Fuzzy values 
represent strings’ likelihood or properness to be a name. Since Chinese is a character-based language, 
methods of estimating fuzzy values are generally also character-based. Names are composed of several 
characters. There are several ways to transform the member characters’ fuzzy value to the string’s 
fuzzy value.  
Stochastic language models are usually adopted to estimate the likelihood of a candidate to be a named 
entity. The fundamental principle is that the string with a higher probability or frequency to be a name 
has a higher fuzzy value or likelihood. There are several ways to estimate the fuzzy value of a string 
from the statistic data based on characters. These models include Markov models, bi-gram models, 
unigram models, etc.  
Each model has its advantages and disadvantages. Generally speaking, more complex the model is, 
more precisely it estimate, and more training data it needs. Besides that, the data-sparseness problem is 
more likely to happen. Since the amounts of features of different types of named entities are varied, 
each type has its own best-fit model. In this paper, to simplify data collecting and training, unigram 
models are adopted. Additionally, some supplementary information such as positional feature is 
exploited to support statistical models.  
Generally there are two major ways to estimate fuzzy values of a single character:  

Frequency: freq(typ|c)=counts(typ, c) 
Probability:  prob(typ|c)=counts(typ, c)/counts(c)=freq(typ|c)/counts(c) 

Frequencies stand for differences among naming-characters. They represent popularities of characters 
to be used in names of some type. If some character is used in more names, it has a higher frequency. If 
frequencies are used as fuzzy values, a higher recall will be obtained with common names.  
Probabilities stand for differences among all characters. They represent possibilities of characters to be 
used in a name of some type. If some character appears more frequently in names than in common 
words, it has a higher probability. If probabilities are used as fuzzy values, a higher precision and a 
higher recall will be obtained with rare names. However, it has a lower recall with common names 
comparing with using frequencies.  
A hybrid statistics is adopted in our system to take advantages of both frequencies and probabilities. 
With common naming-characters, frequencies are adopted to get a higher recall with common names. 
With rare naming-characters, probabilities are adopted to complement frequencies’ insufficiency with 
rare names. The resulting model looks like:  

� (typ|c) = Max{ freq(typ|c), prob(typ|c) } 

Data sparseness and reappearances of names make it hard to estimate probabilities. To overcome these 
difficulties, we propose to use inverse common frequencies to approximate probabilities:  

icf(c)=1/(freq(common word|c)+1)=1/(counts(common word, c)+1) 



Since probabilities are mainly used to estimate the probability of rarely seen events, usually:  
counts(common words, c) � counts(~typ, c),where counts(typ, c) � 2 

In this case, icf(c) is approximate to prob(c):  

prob(c) = counts(typ,c)/(counts(typ,c)+counts(~typ,c)) where counts(typ,c) � 2 
� 1/(counts(~typ,c) + 1) � icf(c) 

Further, we assume that counts(common word, c) is in direct proportion to the number of lexicon 
entries in which the character c appears. Under these assumptions, we use inverse lexicon counts to 
approximate probabilities:  

ilc(c) = 1/(Num_of_Lex_Entries(c)+1) � icf(c) � prob(typ|c) 

Because ilc(c) is ranged from 0 to 1, freq(typ|c) also needs to be normalized to 0 to 1. The distribution 
of raw data of freq(typ|c) is conformed to Zipf’s Law, that:  

Pn � 1/na, where Pn is the frequency of occurrence of the nth ranked item and a is close to 1. 

Values with often seen characters are too high and the distinctions among low frequency characters are 
not wide enough. Therefore, a logarithm function is taken on the raw data to smooth the distribution 
curve, and then the result is normalized to 0.1 to 1.  

)))|((log()|(*
1,1.0

ctypfreqNormctypfreq =   while freq(typ|c) � 1 

Notice that the lower bound of freq*(typ|c) is set to 0.1, not 0. This is because the meaning of events 
that appear once is greatly different from the meaning of unseen events.  
The final character likelihood model looks like:  

�(typ|c) = Max{ freq*(typ|c), ilc(c) } 

Notice that there are two exceptions to this model. With surnames and transliterating characters, 
likelihoods of unseen events in training data are assigned to zero. This is because generally surnames 
and transliterating characters are not arbitrarily given. Probabilities of most characters to be surnames 
or transliterating characters are actually zero. The original model might cause unnecessary 
over-generation. To prevent this problem, only surnames and transliterating characters appearing in our 
training data are adopted as possible ones.  

3.2. Open-ended Named Entity Extraction 

Open-ended named entity extraction models would estimate likelihoods of strings to be some type of 
named entity from character likelihoods. Unigram models are adopted as the basis of our models. They 
could be represented as follows:  

��*(typ|g s) = ��(typ|g)  ConRe(g)  ConSuf(typ, s) 
where g denotes the genuine name and s denotes the suffix part 

If ��*(typ|g s) is over some pre-defined threshold, which is decided by maximizing the f-measure of 
the recall of training data and the excluding rate of lexicon entries, g s would be recognized as a 
possible candidate and added into the candidate pool. Each member of the formula is detailed below:  
� ConRe(g) estimates the confidence could be brought by reoccurrences of the genuine name, which 

is defined as:  
ConRe(g)= kReoccurrence(g) 

2 
when the length of the input document is 
less than 400 characters k =

�
�
�

 
1+400/LEN(Document) Elsewhere 

� ConSuf(typ|s) estimates the confidence could be brought by the suffix part. Different types of 
suffixes could bring different quantities of confidence. One suffix part might comprise many 
different suffixes. The summation of each member’s confidence is computed:  

ConSuf(typ, s) = Conf(typ1, s1) + Conf(typ2, s2) + … + Conf(typn, sn) + 1 where s = s1s2…sn 

Notice that if s is empty, i.e., there are no suffix parts, ConSuf(typ, s) would be 1.  
� The definition of� �� (typ|g) is varied from different types of genuine names. As we mentioned 

before, there are four types of genuine names that would be dealt by our system: personal names, 



location names, organization names, and transliteration names. �� (typ|g) of different types of 
names is defined as follows:  
� ��(PER|s) =ArgMax {��(SUR|s1) *��(GIV|s2) } for every substring s1 and s2,  

where s= s1 s2, “ ” denotes the string concatenation, and:  

��(SUR|c1) when s is constituted 
of one character 

Max{GAvg(��(SUR|c1),��(SUR|c2)),� (SUR|c1c2)} 
when s is constituted 
of two characters 

��(SUR|s) = 
�
�

�
�

�

 

0 
when s is longer 
than two characters  

��(GIV|c1) when s is constituted 
of one character 

GAvg(��(GIV|c1), ��(GIV|c2)) 
when s is constituted 
of two characters 

��(GIV|s) = 
�
�

�
�

�

 

0 
when s is longer 
than two characters 

GAvg( ) returns geometric means. 

� �(TRA|s) = HAvg(��(TRA|ck)) where s=c1…cn and HAvg( ) returns harmonic means. 
��(LOCL|c1) * � (LOCF|c2)   when s = c1c2 
��(LOCL|c1) * � (LOCF|c2)* � (LOCF|c3) when s=c1c2c3 � � � (LOC|s) =

�
�
�

 
0 elsewhere  
��(ORGL|c1) * � (ORGF|c2)   when s = c1c2 
��(ORGL|c1) * � ORGL|c2)* � (ORGF|c3) when s=c1c2c3 ��(ORG|s) =

�
�
�

 
0 elsewhere 

3.3. Supplementary Mechanism 

Besides the above models, there are three supplementary mechanisms designed to relieve 
over-generation problems of stochastic models:  

1. If some candidate is constituted of two multisyllabic words or one multisyllabic word and one 
often seen monosyllabic word, this candidate would be removed from the candidate pool.  

2. If the first or the last character of some three-character-long organization name candidate is a 
monosyllabic word that often appears adjacent to a name, as “ ” and “ ”, this 
candidate will be removed from the candidate pool. 

3. With transliteration names, sometimes a common word might be wrongly attached by a 
transliteration candidate. In this situation, maximal-matching-rule-driven lexical analyzer cannot 
filter it out properly.  
A concept called “team” based on reoccurrences is introduced to solve the attaching problem. 
Basically, all substrings of possible transliteration name candidates are also possible candidates. 
Hence all transliteration name candidates can be grouped into teams according to their longest 
common superstring candidate. For example, a team can be represented as: 

Tleader=  = { (5), (5), (6), (4), (5), (4)} 

Where all appearance times of candidates are marked up, and superstring “ ” is called 
the “leader” of the team.  
The following algorithm is then applied: 
I. Subtract leader’s appearance times from each team member 
II. If the leader could be split into candidates with non-zero appearance times after subtraction 

and multisyllabic common words or frequently used monosyllabic words, discard the leader 
and members whose appearance times being subtracted to zero 

III. Form new teams comprised of remaining candidates with new leaders  
IV. Repeat step I~III, until no candidates could be discarded 



4. Lexical Analysis 

The lexical analyzer is responsible for verifying candidates generated by the candidate generator. 
Heuristic rules are adopted to filter out false named entity candidates and resolve ambiguities caused by 
false candidates. There are six heuristic rules applied in order precedence:  
Rule 1: Tri-word maximal matching, which is proposed by Chen & Liu (1992) �[1]. The rule follows 

below three steps: 
1. From the segmenting point, look forward for all possible tri-word combinations. 
2. Take the first word of the longest sequence of all, segment this word. 
3. Move to the next segmenting point.  

For example, with the sentence “ ”, “ ” would be picked instead of “
” because “   ” is longer than “   ”. 

Rule 2: Least number of NEs first, which would pick the tri-word sequence with the least number of 
named entities among all sequences of the same length.  

Rule 3: Most frequently appearing NEs first, which would pick the tri-word sequence with the most 
appearing times of component NEs in the input document.  

Rule 4: Words of even lengths first, which would choose the sequence with most words of even 
lengths. There are several exceptions to this rule. First, personal names, transliteration names, 
and numerical expressions are not concerned in this rule. Second, the often seen monosyllabic 
words, like “ ”, “ ”, “ ”, etc., are viewed as words of even lengths instead. For example, 
“   ” is regarded as totally having two words of even lengths, one is “ ” and 
another one is “ ”, not “ ”. Third, the suffix part of a whole named entity is not 
considered into the length of it. For example, “ ” is viewed as a word of even 
lengths, not of odd ones. 

Rule 5: Often seen monosyllabic words first, which is also proposed by �[1], would pick the sequence 
with the most often seen monosyllabic words.  

Rule 6: Forward precedence, which would choose the tri-word sequence with longer forward words. 
For example, with two ambiguous tri-word sequence “   ” and “   ”, 
the former would be picked since “ ” is longer than “ ”. 

In order to measure the performance of our lexical analyzer on ambiguity resolution, the test samples of 
our system (61 news articles from United Daily News and Central News Agency, which will be further 
discussed later) are examined. The following measurements are adopted:  

� Ambiguous Tri-Word Sequences: # of all possible tri-word sequences which could not be 
discriminated by the prior rules 

� Resolved: # of tri-word sequences which could be filtered by the corresponding rule 
� Errors: # of correct words which are wrongly filtered 
� Applying Rate: Resolved / Ambiguous Tri-Word Sequences 
� Accuracy: 1 – Errors / Resolved 

The experimental results are listed in Table 4.1: 

Table 4.1. The performance of heuristic rules in ambiguity resolution  

 



5. Recovery 

The recovery mechanism would revive obvious incorrect results of segmentations which are not 
suitable to be solved by priority-style rules. These anomalies mainly comprise two situations: over- 
segmentations caused by under-generation, and under-segmentations caused by over-generation. The 
segmentation checker would find suspect segmentation sequences and try to recover them.  
To deal with over-segmentations, sequences of three or more seldom used monosyllabic words in a row 
are suspected. These suspects are checked to see if any fragments of them could constitute NE 
candidates with �(TYP|s) over a predefined suspect threshold of the corresponding type. 
For example, since �(TRA|“ ”) = 0.43 < 0.51, the candidate threshold of �(TRA|s), the string is 
usually segmented to “   ” in the first two phases. This suspect sequence will be detected by the 
segmentation checker. Because �(TRA|“ ”) is larger than the suspect threshold of �(TRA|s), 
which is set to 0.2 in our system, “ ” is added into the candidate list of transliteration names.  
With personal names, there is another special case. Let us consider the personal name “ ”. 
�(PER|“ ”) = 0.23 < 0.26, the candidate threshold of �(PER|s). However, �(PER|“ ”), 
which equals 0.54, is larger than the candidate threshold. When this situation happens, the personal 
name is usually incorrectly segmented into a personal name of two characters and a monosyllabic 
word, such as “  ” in this case. To cope with this situation, the following sequence is also 
viewed as suspects of over-segmentations:  

two-character-long personal name candidate + seldom used monosyllabic word 

On the other hand, to deal with under-segmentations, segmentation sequences constituted of interlaced 
appearances of transliteration, location, organization names, and seldom used monosyllabic words, are 
suspected. These sequences are attempted to be re-segmented into a new sequence containing one more 
word than the original sequences. For example, if “ ” is incorrectly recognized as a location name, 
the phrase “ ” would be wrongly segmented into a suspect sequence “  ”. This 
sequence would be detected and re-segmented into the right sequence “   ”. If the 
re-segmenting cannot be performed, the original sequence will be kept.  
The procedure of segmentation checker is as follows:  

1. Check over-segmented sequences 
2. Check under-segmented sequences 
3. Repeat step 2, until no new suspect sequences appear 
4. Check over-segmented sequences again 

6. Evaluation 

To measure the performance of our system, a corpus which is balanced and well-tagged according to 
our standard is needed. The most popular standard test corpus, MET-2 data, is biased on some special 
topics and uses a different tagging standard from ours. Therefore, instead of a standard testing corpus, 
we obtain 61 articles from United Daily News and Central News Agency as our test bed. These articles 
are segmented and tagged by our system and corrected manually.  
These 61 articles are gathered from five different domains. They are politics, society, business, sports, 
and entertainment. Because the quantity of politics news and society news is more than others, we 
obtain three different sub-topics (lawsuit, government, and election) from politics news and two (crime 
and local) from society news.  
Table 6.1 draws the experimental results of our system. Standard measurements are estimated:  

Recall = (# of Ext. – # of False)/(# of True) 
Precision = 1 - (# of False)/(# of Ext.) 

Notice that there are two special columns in the table, number of words and excluding rate. Because 
appearing frequencies of NEs are varied in different domains and have a great impact on precision, 
precision is thus less meaningful. We consider that excluding rate might be a better measurement of 
over-generation. Excluding rate is counted from:  

Excluding rate = 1 - (# of False)/(# of Words - # of True) 

It stands for the percentage of non-NEs being correctly filtered by our system.  



Table 6.1. Experimental results of our system 

  

Table 6.2 shows the recall of different types of NE. Because we do not focus on automatic 
classification, one NE might be recognized by many different models, it’s hard to judge the precision 
of each type and only the recalls are listed here.  

Table 6.2. Recall of our system with different types of NEs 

 

Notice that the first five columns (PER, TRA, LOC, ORG, ABB) only include the focused types of our 
system. Column PER comprise only formal Chinese personal names and personal names with 
appellations. Other personal names, such as Japanese name “ ” and pseudonym “ ”, are 
counted in the column PO instead. Monosyllabic place names without suffixes, like “ ” and “ ”, are 
recognized by lexicon matching and counted in the column LO. Government and team names are also 
recognized by lexicon. They are viewed as OO. All other location names and organization names are 
included in the column LOC and ORG respectively. Column ABB contains only abbreviations with 
original reference in the input document, other abbreviations are considered as AO.  

7. Conclusions and Future Works 

Overall speaking, pure lexical information is employed to recognize named entities in our system. Only 
statistical features and internal structures of NE are utilized. Our statistical model and heuristic rules 
are simplified for easy implementation. However, our system gets a satisfied performance, and there 
are still many rooms for improvement.  



First, statistical models could be refined. More training data could be collected. More elaborate 
candidate generating models could be adopted, such as bi-gram models. More internal features could 
be exploited, such as positional information of characters. Contextual information, such as word 
probability of being adjacent to some type of NEs, could be also added into our model.  
Second, heuristic rules could be more completed or substituted by other mechanisms. Shortcomings of 
heuristic rules form an upper-bound barrier of performances. More rules could be introduced to cover 
the inadequacies of original ones. Other mechanism like statistical approaches could be used to replace 
rule-driven methods.  
Third, more candidate generating models could be added. Many types of NEs have not been addressed 
in our system. We could find that these NEs occupy a great proportion of true negative errors. If these 
NEs could be recognized, the recall of our system is supposed to be boosted.  
Fourth, more knowledge could be gathered and utilized. The suffix and appellation information used in 
our system is handcrafted at present. Bootstrapping or machine learning algorithm might help us 
automatically retrieve these kinds of information from the Internet or corpus. Part-of-speech tagging, 
syntactic checking and even semantic analysis might also be added into our future system.  
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