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Abstract
We review the science and technology of spoken language processing. We first dis-
cuss the most successful approach to spoken language processing, namely the pattern
recognition approach. We illustrate how sophisticate statistical modeling techniques
can be used together with a large amount of spoken and written examples to design
models for high performance spoken language systems. We then point out the current
capabilities and limitations of spoken language systems. Finally we discuss research

challenges to enhance the capabilities and reduce the limitations.

1 Introduction

In the last two decades advances in automatic speech recognition (ASR) natural language
processing (NLP) have triggered the development of a number of spoken language system
applications ranging from small vocabulary keyword recognition over dial-up telephone

lines, to medium size vocabulary voice interactive command and control systems on per-

~ sonal computers, to large vocabulary speech dictation, spontaneous speech uﬁderstanding,

restricted-domain speech translation, and spoken dialogue system. With the introduction
of internet, intranet and world wide web (WWW), we expect to see speech input/output
(I/O) capabilities, in the user’s own language, be incorporated into some of the existing
web interfaces to improve human computer interaction (HCI) [83]. Furthermore, with the
emergence of computer telephony integration (CTI) [16], we also anticipate to have avail-
able intelligent speech interfaces serving as voice agents to provide interactive problem

solving capabilities over the world-wide communication and computer networks.



Due to the sophistication of computing and communications systems, there is an in-
creasing demand for such systems to be equipped with intelligent multimedia use interfaces.
Speech, by far, is the most direct and natural means for human beings to communicate
with machines. Because of the human involvement in the communication chain, spoken
language processing has emerged as a new exciting research field. It encompasses many
vastly different key areas, including acoustics and transducers, signal processing, wired and
wireless transmission, array processing, audio and visual perception, speech/image cod-
ing, recognition and synthesis, natural language understanding and generation, heuristic
search and problem solving, information retri;sval, knowledge representation, multime-
dia presentation, database management and design, human factors, etc. Inspired by its
inter-discipline nature, we have witnessed collaboration among researchers in some of the
abovementioned areas. New directions are constantly being pursued and new advances
are regularly being made. For a sample of the progress, interested readers are referred
to the recent publications of the Proceedings of the annual International Conference on
Acoustics, Speech and Signal Processing (ICASSP), the biannual European Conference
on Speech Communication and Technolbgy (EuroSpeech), and the biannual International
Conference on Spoken Language Processing (ICSLP).

Much of the recent effort in spoken language processing has been stimulated by the
Advanced Research Project Agency (ARPA) of the United States, formerly known as
D(efense)ARPA, which has funded research, under the human language technology (HLT)
and spoken language system (SLS) programs, on three recent language recognition and
underatnding projects, namely the Naval Resource Management (RM) task, the Air Travel
Information System (ATIS) and the North American Business (NAB, previously known
as the Wall Street Journal or WSJ) task. In Europe, many coun.tries and research groups
participated in the SUNDIAL project [54] under the Esprit program to jointly develop
systems that can understand several Europeaﬁ languages in multiple domains (including
Eurorail train reservation). In Japan, spoken dialogue understanding and generation re-
search was carried as one of the priority scientific areas from 1993 to 1996, funded by the
Ministry of Education, Science, Sports and Culture [17]. It involved more 30 universities
conducting studies in four key areas in spoken dialogue processing, namely speech recog-
nition and synthesis, language analysis and generation, understanding and presentation
of conceptual information, and dialogue modeling. It is clear that there is a world-wide

interest in establishing natural multi-lingual, human-machine communication interfaces.



It is also clear that much of the advances was made by a collaborative community, in which
responsibilities, such as collecting large speech and text corpora, defining.common task.
developing research tools, building research infrastructure, establishing common evalua-
tion metrics, and educating the community, the funding agencies and general public, are
shared among participating groups. As a result, we are enjoying a steady progress in the

spoken language processing technology.
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Figure 1: Block diagram of a typical spoken language system.

A block diagram of a typical spoken language system is shown is Figure 1. The USER
module is a model of the user that produces speech input to the spoken language system
shown in the dotted box. It also takes the information provided by the audio /visual feed-
back modules of the system. The spoken language system consists of two parts, namely the
speechv-'I/ O component shown in the left dashed box and the text I/O components shown
in the right dashed box. The automatic speech recogniti(.)n module takes the speech input
from the user and generates a preliminary list of recognized words, phrases and sentences.
The natural language processing module analyzes the recognized partial hypotheses and
produces a set of meaningful candidates for the system manager (SM) module. The SM
modu_l_'e evaluates the current set of input candidates, communicates with the database

‘management system (DBMS), prepares the output semantic action, and updates the dis-

course information which describes the current state of the dialogue session. This informa-



tion can also be used as additional constraints to help reduce the computation requirement
and to improve the output quality of both the ASR and the NLP modules. The text gener-
ation (TG) module extracts useful information provided by the SM module and generates
a compact representation of the current state of the system so that a set of text, tables and
graphics can be displayed as visual feedback (V/FB) information for the user. In some
cases, the amount of materials to be communicated to the user is overwhelming. Informa-
tion retrieval (IR) and systematic organization of the feedback information are required.
A simple dialogue, via display and/or spoken interface, can even be established between
the user and the system to properly communicate the extracted information to the user.
While thétext—to—speech (TTS) module generates a compact set of speech outputs to bhe
played back as audio feedback (A/FB) for the user. Since the choices of the TTS and
TG oﬁtputs depend on the availability and the quality of both the A/FB and the V/FB
modules, they should be designed together to help enhance the human-machine interface
of the system.

It is clear that a number of knowledge sources, including acoustic models of fundamen-
tal speech units, lexical models of words and phrases, syntactic models for word sequences,
semantic models for meanings, dialogue models for monitoring the states of a dialogue ses-
sion, are needed in the design of a spoken dialogue system. Many data-driven approaches,
including the connectionist approaches based on artificial neural networks (ANN’s) and
decision tree approaches based on the classification and regression tree (CART) frame-
work, can all be used to model the knowledge sources. It is also important to learn from
realistic examples through data collection.

The rest of the paper is organized as follows. The two key ASR and NLP modules
are discussed in details in Sections 2 and 3 respectively. Issues related to integration of
ASR and NLP are addressed in Section 4. Since statistical pattern recognition paradigm
is the most successful approach to speech recognition, a similar formula’gion for speech
understanding is given in Section 5. The state-of-art technology is also reviewed. A case
study of designing a real-world car reservations system in attempt to move spoken language
system out of research laboratories is illustrated in Section 6. Some of the research issues
in spoken language processing are also addressed. Finally we summarize our discussion in

Section 7.



2 Automatic Speech Recognition

In this Section, we discuss in detail how speech recognition is implemented. We describe
each building block, how blocks are put together and what are the research issues involved
in speech recognition. This serves as an illustration how natural language processing prob-
lems can be solved and implementation. Although the system components are somewhat
different and the research issues bear different dimensions, we believe the methodology
adopted to solve speech and language problems are rather similar in nature.

The approach that is conventionally taken to speech recognition is basically a statistical
pattern recognition approach. A block diagram of a typical subword—baged continuous
speech recognition system is shown in Figure 2. The feature analysis module provides the
acoustic feature vectors used to characterize the spectral properties of the time varying
speech signal. The word-level acoustic match module evaluates the similarity between the
input feature vector sequence (corresponding to a portion of the input speech) and a set
of acoustic word models for all the vocabulary words to determine which words were most
likely spoken. The sentence-level match module uses a language model to determine the
most likely sequence of words. Search and recognition decisions are made by considering
all likely word sequences and choosing the one with the best acoustic matching score
as the recognized sentence. Stochastic learning techniques play a crucial role both in the
extraction of spectral features and in the design of the acoustic models for the fundamental
speech units, the lexical models for the word and phrase units, syntactical models for the

grammar and semantic models for the task constraints.
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Figure 2: Block diagram of a typical integrated continuous speech recognizer.




Two keys to the success of modern speech recognition systems are the use of statistical
modeling techniques (e.g. hidden Markov models, or HMM’s) to characterize the basic
subword units (e.g. [61]) and the use of dynamic programming techniques to search for
the most likely sequence of words [8] of a knowledge network representing the recognition
task. Since all the knowledge sources required to represent acoustics, morphology, lexicon,
syntax and semantics are modeled by a finite state directed graph, this allows us to
have an integrated knowledge network by embedding the multiple phone models into each
lexical entry, and by embedding the multiple lexical entries into each word, and finally by
embedding the word models into each sentence. The subword' models are trained hased
on the network representation of the orthographic transcription of the training sentences.
Recognition is then accomplished by finding the most likely (least costly) path in the
network which implies the recognized word string. FEach of the system component is
described briefly in the following. For a survey of ASR research issues, the readers is

referred to a recent article [43].

2.1 Speech Analysis and Feature Extraction

The purpose of the feature analysis module is to parametrize the speech into a parsimo-
nious sequence of feature vectors that contain the relevant (for recognition) information
about the sounds within the utterance. Although there is no consensus as to what con-
stitutes the optimal feature analysis, most systems extract spectral features with the
following properties: having good discrimination to readily distinguish between similar
speech sounds, being easy to model statistically without the need for an excessive amount
of training data, and having statistical properties which are somewhat invariant across
speakers and over a wide range of speaking environments. To our knowledge there is
no single feature set that possesses all the above properties. The features used in speech
recognition systems are largely derived from their utility in speech analysis, speech coding,

and psycho-acoustics.

2.2 Selection of Fundamental Speech Units

The word-level acoustic match module determines the optimal word match based on a set
of subword models and a lexicon. The subword models are the building blocks for words.

phrases, and sentences. Ideally, subword models must be easy to train from a finite set of



unmanageable), we must use a finite size training set. This immediately implies that some
subword units may not occur as often as others. Hence there is a tradeoff between using
fewer subword units (where we get good coverage of individual units, but poor resolution of
linguistic context), and more subword units (where we get poor coverage of the infrequently
occurring units, but good resolution of linguistic context).

An alternative to using a large training set is to start with some initial set of subword
unit models and adapt the models over time (with new training material, possibly derived
from actual test utterances) to the task, the speaker and/or the environment. Such meth-
ods of adaptive training are usable for new speakers, tasks and environments, and provide
an effective way of creating a good set of application-specific models from a Iﬁore géneral
set of models (which are speaker, environment, task, and context independent).

Speech patterns not only exhibit highly variable spectral properties but also show
considerable temporal variation. There are not many modeling approaches that are both
mathematically well-defined and computationally tractable, for modeling the speech signal.
The most widely used and the most successful modeling approach to speech recognition is
the use of hidden Markov models (HMMs). Artificial neural network~(ANN) approaches
have also been used to provide an alternative modeling framework and a new computing
paradigm. Almost all modern speech recognition systems use hidden Markov models and

their extensions to model speech units.

2.4 Lexical Modeling and Word Level Match

The second Comp.onent of the word-level match module is the lezicon which provides a
description of the words in the task vocabulary in terms of the basic set of subword units.

The lexicon used in most recognition éystems is extracted from a standard dictionary
and each word in the vocabulary is represented by a single lexical entry (called a baseform)
which is defined as a linear sequence of phone units: This lexical definition is basically
data-independent because no speech or text data are used to derive the pronunciation.
Based on this simplification, the lexical variability of a word in speech ié characterized
only indirectly through the set of sub-word models. To improve the lexical modeling
capability, data-dependent approaches such as multiple pronunciation and pronunciation
networks for individual words have been proposed.

Among the issues in the creation of a suitable word lexicon is the baseform (or standard)



speech material and robust to natural variations in accent, word pronunciation, etc., and
provide high recognition accuracy for the intended task.

Subword units corresponding to phonetic classes are used in most speech recognition
systems today. Such units are modeled acoustically based on a lexical description of the
words in the training set. In general, no assumption is made, a priori, about the mapping
between acoustic measurements and subword linguistic units. This mapping is entirely
learned via a finite training set of speech utterances. The resulting units, which we call
phoneme-like units or PLUs, are essentially acoustic models of linguistically-based units
as represented in the words occurring in the given training set. Since the set of PLUs are
usually chosen and designed to cover all the phonetic labels of a particular language, and
words in the language can usually be pronounced based on this set of fundamental speech
units, this pattern recognition approach offers the potential of modeling virtually all the
~ words and word sequences 1n the language.

The simplest set of fundamental speech units are phones that correspond to the basic
phonemes of the language. These basic speech units are often called context-independent
PLUs since the sounds are represented independent of the linguistic context in which they
occur. Other choices for units include diphones, demisyllableés, syllables, whole-words and
even phrases.

For a given task, high recognition accuracy can be achieved only when the subword
unit set contains context-dependent phones which maximally covers the v.ocabulary and
the task language and when these phone units are adequately modeled using a large
training set. However, the collection of a large amount of task-specific training data for
every individual application is not practical. Task and wvocabulary independent acoustic

training and task-specific vocabulary learning are therefore important research topics (e.g.

[44]).

2.3 Acoustic Modeling of Speech Units

Training of subword unit models consists of estimating the model parameters from a
training set of continuous speech utterances in which ail of the relevant subword units
are known to occur “sufficiently” often. The way in which training is pérformed greatly
affects the overall recognition system performa,u;:e. A key issue in training is the size of the

training set. Since infinite size training sets are impossible to obtain (and computationally



pronunciation of each word as well as the number of alternative pronunciations provided for
each word. The baseform pronunciation is the equivalent, in some sense, of a pronunciation
guide to the word; the number of alternative pronunciations is a measure of word variability
across different regional accents and talker population.

In continuous speech, the pronunciation of a word can change dramatically from that
of the baseform, especially at word boundaries. It has been shown that multiple pronun-
ciations or pronunciation networks can help deal with lexical variabilities more directly.

Modeling lexical variability requires incorporation of language-specific phonological
rules, the establishment of consistent acoustic-to-linguistic mapping rules (related to the
selection and modeling of subword units), and the construction of word models. Prob-
abilistic word modeling, which directly characterizes the lexical variability of words and

phrases, is a promising research direction.

2.5 Language Modeling and Sentence Match

The sentence-level match module uses the constraints imposed by a grammar (or syntax)
to determine the optimal sentence in the language. The grammar, conéisting of a set
of syntactic and semantic rules, is usually specified based on a set of task requirements.
Although there have been proposed a number of different forms for the grammar (e.g.
context-free grammar, N-gram word probabilities, word pair, etc.), the commonly used
ones can all be represented as finite state networks (FSNs). In this manner it is relatively
straightforward to integrate the grammar directly with the word-level match module.

The language models used in smaller, fixed-vocabulary tasks are usually specified man-
ually in terms of deterministic finite state representations. For large vocabulary recogni-
tion tasks, stochastic N-grams such as bigram and trigram models have been extensively
used. Due to the sparse training data problem, smoothing of the N-gram probabilities is
generally required for cases with N > 2. C’lass-depenc'lent bigrams and trigrams have also
been proposed.

Advances in language modeling are needed to improve the efficiency and effectiveness
of large vocabulary speech recognition tasks. Some of the advances will come from better
stochastic language modeling. However the language models, obtained from a large body of
domain-specific training data, often cannot be applied directly to a different task. Adaptive

language modeling, which combines information in an existing language model and a small



amount of application-specific text data, is an attractive approach to circumvent such

difficulties. We will discuss the important issue of language modeling in Section 3.

2.6 Search and Decision Strategies

In addition to the use of hidden Markov models to model speech units, the other key
contribution of speech research is the use of data structures for optimally decoding speech
into text. In particular we use a finite state representation of all knowledge sources,
including the grammar for word sequences, the network representation of lexical variability
for words and phrases, as well as for morphemic, syllabic, and phonemic knowledge used
~ to form fundamental linguistic units, and the use of hidden Markov models to map these
linguistic units to speech units. Based on this type of data structure, most knowledge
sources needed to perform speech recognition can be integrated into a finite network
representation of hidden Markov acoustic states, with each state modeling the acoustic
variability of each speech sound and all state transitions representing the link between
different knowledge sources according to the hierarchical structure of the spoken language.
As a result, speech recognition problems can be mapped to finding the most likely sequence
of words through the task network such that the likelihood of the speech signal (or the
corresponding acoustic feature vector sequence) is maximized. Decoding of such a network
is accomplished efficiently through dynamic programming approach. We give a detailed

description of the DP search method in Section 4.

3 Natural Language Processing

Similar to ASR, many NLP problems can often be formulated with the pattern matching
paradigm as long as the language-related knowledge sources can be defined and modeled.
However unlike ASR which is well defined as a problem of converting spoken utterances
into a sequence of words, there are many more dimensions to be addressed in natural
language processing. Depending of the task requirements, different NLP pfoblems can be
defined accordingly. The reader is referred to [30] in this Proceedings for a review. In
this Section, We will focus our discussion mostly on stochastic language modeling. Issues
related to spoken language understanding and dialogue processing will be addressed in

Section 5.
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Although stochastic modeling techniques have been used extensively in modeling speech
units, the approach to modeling linguistic units, on the other hand, is largely centered
around the rule-based, expert system paradigm. Rules needed for understanding natural
language, including lexical, syntactic, semantic and discourse analysis, are usually spec-
ified manually by human experts based on task constraints. Knowledge representation.
knowledge acquisition and task portability are three key issues in the design of rule-based
language systems. When spoken language is considered as a means of natural language
input, it creates additional processing demands on the system design. First, as opposed
to the processing of text input, the speech input needs to be recognized by the system
and converted to some form of text units for further processing. Therefore a good speech
recognition “front-end” is absolutely required in a spoken language system. Second, since
the recognition process is error-prone, the recognized text is often ill-formed, and the rules
which are designed based only on text data may not be able to cope with the erroneous
sentences produced by the speech recognition “front-end”. Rule modification based on
spoken data is therefore needed. Third, the grammars for spoken languages are different
from those for written languages. Non-linguistic speech events, such as um’s and ah’s,
false starts, disfluency and hesitation, etc., needed to be detected from the spoken input
and identified along with all the other linguistically-defined speech events. Therefore, spo-
ken language grammar modeling is an important research topic for designing good spoken
language systems. Last but not the least, out-of-vocabulary spoken events, such as new
words or ill-defired sentences, are difficult to identify which causes the number of falsely
detected words to increase.

In the past several years, corpus-based language modeling approaches have emerged.
Similar to corpus-based acoustic modeling which is used in most speech recognition sys-
tems, corpus-based language modeling requires a large body of labeled text data for train-
- ing language models or deriving linguistic rules. A large set of test and/or cross-validation
data to evaluate the performance of the modeling techniques is also needed. In contrast to
speech which is a continuous signal, the text information is usually realized as a discrete
event. There is no problem identifying fundamental text units, such as alphabets and
words (as long as they are not mis-spelled). The properties associated with a fundamental
text unit are usually represented as attributes, such as parts of speech, which are discrete in
nature. Therefore, the most widely-used statistical modeling technique is to compute the

N-gram probabilities of text units, including N-grams of alphabets, morphemes, syllables,
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words, classes of words, parts of speech, and semantic attributes.

The language models used in smaller, fixed-vocabulary tasks are usually specified man-
ually in terms of deterministic finite state representations. Class-dependent bigrams and
trigrams have also been proposed. To account for longer language constraints, tree lan-
guage models have been proposed [3]. The use of a context-free grammar in recognition
is still limited mainly due to the increase in computation and the difficulty in stochastic
modeling. Only small context-free languages have been studied and used ([51]). A finite
state approximation of a restricted-domain context-free language has also been evaluated
for speech translation (e.g. [62]). Although, the use of word-based context-free grammars
is limited, an LR parser has been successfully used to implement context-free phoneme

look-ahead rules in a Japanese speech translation system (e.g. [50]).

3.1 Static Modeling of Linguistic Units

The most popular technique for characterizing discrete events is by counting their relative
frequencies of occurrences in the training data. This results in the maximum likelihood
estimate of the unigram probabilities [25]. By extending the same notion to counting of
sequence of N consecutive discrete events, we have the maximum likelihood estimate of
the N-gram probability of discrete events. For large vocabulary ASR tasks, stochastic
N-grams such as bigram and trigram have been extensively used [33]. Due to the sparse
training data problem, smoothing of the N-gram probabilities is often required for cases
with N > 2. Another problem with maximum likelihood N-gram estimation is that many
events which are not observed in training data often appear in testing. There using a
null-probability as the estimate I(MLE) for such events is not satisfactofy. This null-
probability problem is similar to the zero cell problem in the estimation of discrete HMM
state distributions. Several smoothing techniques, including the backoff approach [37] the
modified zero frequency technique (e.g. [57]), the add-one technique, and clas.s-depen'dent
N-grams, have been proposed to deal with distribution degeneracy problem and to improve

the robustness and generalization capability of the N-gram models.

3.2 Modeling of Underlying Linguistic Structure

Words and sequence of words are observed events in written language processing just like

speech signal is the observed event in spoken language processing. For ASR, the HMM
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framework has been successfully applied to characterize the unobserved (hidden) events,
such as words, which are embedded in spoken language. Beyond words, there are other
important unobserved events in spoken and written language processing, including classes
of words such as parts of speech, word attributes such as meanings of words, structure of
words such as grammar and the implied set of production rules associated with a sentence.

Stochastic modeling techniques have been applied to characterize such hidden linguis-
tic structures. The first example is tagging a sequence of words with a sequence of parts
of speech [14]. N-gram probabilities of observing sequence of parts of speech and the
corresponding lexical probabilities are estimated from a labeled training corpus and dy-
namic programming search is used to determine the sequence of tags that maximizes the
probabilities of observing the word and tag pairs. When the parts of speech labels are
replaced with semantic attributes, we have a model of meanings expression as a sequence
of semantic attributes and their interactions ([55]). The semantic attribute, called concept.
are hidden and needed to be decoded from the observed sequence of words. The hidden
Markov modeling framework can now be applied directly. N-gram probabilities are again
used to model the concept sequence and the concept-specific language model in a semantic
state ([55]).

In formal language characterization words are considered as terminal symbols which
are directly observed in most written languages (although in some languages, such as
Chinese and Japanese, words are not directly observed and need to be segmented because
no space symbols are used as word boundary markers). Non-terminal symbols, such as
parts of speech, and their interactions with other terminal and nonterminal symbols are
of interests for natural language processing. For example, production rules are used to
characterize formal grammars. Stochastic trainable grammar was first proposed by Baker
in 1979 [4]. The so-called inside-outside algorithm for context-free grammar (as opposed
. to the so called forward-backward algorithm for ‘ﬁnite state grammar), has been used to
train production rule probabilities and to perform stochastic parsing for both ASR and
NLP tasks (e.g. [19, 40, 70]).

New stochastic modeling techniques have been proposed to handle word and sentence
alignment of parallel text from two natural languages ({10]). Techniques have also been
applied to characterize the undelying language structures and their relatidnship between
two languages. For example, translation models between two natural languages (English

and Frénch) have been constructed entirely from the training corpora [10]. Grammatical
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association techniques [53, 76]. have also been proposed to construct stochastic transduc-
tion models from a stochastic grammar of a natural language to a stochastic grammar of

another artificial language.

3.3 Adaptive Modeling of Linguistic Units

Most spoken language systems rely on a static design strategy in that all the knowledge
sources needed in a system are acquired at the design phase and remain the same during
testing. Since the samples used in the design are often limited, this results in some mis-
match problems. A better way is to acquire the knowledge dynamically. Néw information
is constantly collected during the testing stage and is incorporated into the system using
adaptive learning algorithms.

For adaptive modeling of N-grams, some approaches have been proposed recently.
The first uses a cache [34] obtained from performing the actual task. Usually a history
of the last few hundred words is maintained and used to derive a cache trigram and then
combine with the static trigram. This results in an adaptive trigram which is the weighted
interpolation of both the static and the cache trigram. This technique is similar to the
Bayesian adaptation technique ([20]) that combines the new observed data and the existing
model in a maximum a posteriori sense.

The cache based approach can be extended to include long-distance dependency be-
tween words appearing in the training text. One such approach is the so-called trigger-
based modeling ([41]) in which trigger word pairs are established in the training phase.
Words appearing in the cache (the history) of the current task are used as triggers to
modify the N-gram word probabilities of the words triggered by those trigger words. The
mazimum entropy principle is then used to update the N-gram word probabilities [41].
The MAP principle (e.g. [21]) and the minimum discriminant estimation [18] can also be
used; To enhance spoken dialogue system design we expect more research be conducted

in the area of adaptive modeling of underlying linguistic structures.

3.4 Emerging Modeling Techniques

With the availability of advanced data-driven approaches, such as the HMM and the ANN
modeling frameworks, it is now relatively easy to design a speech recognition system as

long as a large body of training data is available and a task specification is given. However,
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it is not possible to collect data that cover all the task variability. Therefore, task-specific
database collection is not the ideal way to deal with the variability problems in stochastic
modeling. Databases should be collected with the purpose of learning about the source
of variability so that algorithms can be designed to identify and properly handle such
variability.

Advances in language modeling are needed to improve the efficiency and effectiveness
of large vocabulary spoken dialogue tasks. Some of the advances will come from better
stochastic language modeling. However the language models, obtained from a large body of
domain-specific training data, often cannot be applied directly to a different task. Adaptive
language modeling, which combines information in an existing language model and a small
amount of application-specific text data, is an attractive approach to circumvent such
difficulties. Discriminative modeling approaches, such as minimum classification error
training ([36, 35, 72, 73]) and error correcting grammatical inference (ECGI, [59]), are
also useful in producing more accurate models even when the amount of language training
data is only limited. Such a discriminative parameter learning strategy has been recently
applied to create integrated speech and language models for Mandarin speech recognition

[11]).

4 ASR and NLP Integration

As seen in Figures 1 and 2, many knowledge sources are needed for automatic speech
recognition and natural language processing in order to find the most likely recognized
sentence and the determine.the most appropriate action in a spoken language system.
There are two basic heuristic search strategies, the modular and integrated approaches, to
find the the most likely sentence that satisfies all the task constraints. We now describe
issues related to the integration of speech and language knowledge sources in spoken
language system design. We also discuss the performance tradeoffs among various search

and decision strategies.

4.1 Integrated Search Strategy

In the integrated approach, the recognition decision is made by jointly considering all the

knowledge sources. In principle, this strategy achieves the highest performance if all the
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knowledge sources can be completely characterized and fully integrated. Using a finite
state representation of acoustics, lexical knowledge, syntax and semantics, it is possible
to compile all the above knowledge sources into a single finite state network composed of
acoustic states and grammar nodes and their connections. This is the commonly adopted
search strategy in speech recognition today. However, there are a number of problems with
the integrated approach. First, not all knowledge sources can be completely characterized
and integrated. For example, supra-segmental information such as prosody and long-term
language constraints such as trigram probabilities cannot easily be cast into the finite state
specification. Second, for large vocabulary tasks, the compiled network is often too large

~and therefore it becomes computationally intractable to find the best sentence.

4.2 Modular Search Strategy

On the other hand, for the modular approach, the recognized sentence is obtained by
performing unit matching, lexical matching, and syntactic and semantic analysis in a se-
quential manner. As long as the interface between adjacent decoding modules can be
completely specified, each module can be designed and tested separately. - Therefore col-
laborative research among different groups working on different components of the svstem
can be carried out to improve the overall system performance. A majority of existing
spoken language understanding and dialogue systems are designed collaboratively in this
manner among speech and natural language researchers. In addition to the above ad-
vantage, modular approaches are usually more computationally tractable than integrated
approaches. However one of the major limitations with the modular approaches is that
hard decisions are often made in each decoding stage without knowing the constraints
imposed by the other knowledge sources. Decision errors are therefore likely to propagate
from one decoding stage to the next and the accumulated errors are likely to cause search
errors unless care is taken to minimize hard decision errors at every decoding or matching

stage.

4.3 Multi-Pass Decision Strategies

As opposed to the traditional left-to-right, one-pass search strategies, multiple-pass algo-
rithms perform a search in a way that the first pass typically prepares partial theories and

additional passes finalize the complete theory in a progressive manner. The tree-trellis
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algorithm [71] and the forward-backward search [1] are two examples of such multi-pass
strategies. These algorithms are usually designed to provide N-best string hypotheses
(e.g. [65, 71]). To improve flexibility, simpler acoustic and language models are often
used in the first pass as a rough match to produce a word lattice. Detailed models and
detailed matches are applied in later passes to combine partial theories into the recognized
sentence. Segment and phone lattices, followed by lexical access and language analysis,

has also been successfully implemented (e.g. [46, 81]).

4.4 The N-Best Search Paradigm

The N-best search paradigm [66] is an ideal way for integrating multiple knowledge sources.
It has been used for rescoring a preliminary set of candidate strings with higher-level
constraints like a digit check-sum [71], with detailed cross-word unit models and long-
term language models [5, 66], with segmental neural nets [79] and with prosodic models
[75] for speech understanding, and with a semantic post-processor [55] for incorporating a
full task grammar, etc. It has also been used to provide competing sfring hypotheses for
discriminative training and for combining multiple acoustic models to redﬁce recognition
errors [13]. We expect to see more use of the N-best search paradigm for designing
large vocabulary speech recognition, speech understanding, spoken dialogue and speech

translation systems.

» Utterance Recognized
-~ Verifier/ tencs
> Matcher .

4 Y A A 4

Speech

Featureg Unit Word Syntax Task
Match [ | Match [ ] Match | Match

A A A f
Unit Word ynta Task
Model Model Model Model

Figure 3: Block diagram of a top-down knowledge source integration.
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4.5 Hybrid Search Strategy

It seems reasonable to assume that a hybrid search strategy, which combines a modular
search with a multi-pass decision, will be used extensively for large spoken language tasks.
Good delayed decision strategies in each decoding stage are required to minimize errors
caused by hard decisions. Multiple word and string hypothesization is also crucial for the
integration of multiple and sometimes incompatible knowledge sources. An example is
shown in Figure 3 in which the partial theories from each matching module are integrated

to find the recognized sentence through an utterance verifier.

5 Spoken Language Understanding

Speech recognition is the process of converting an input speech utterance into a sequence
of words. To further capture the meaning of the recognized sentence requires the char-
acterization of semantics behind the message. However meaning in natural language is
often ambiguous. For database access tasks such as the DARPA ATIS task [27, 28] the
required semantic knowledge is usually compiled manually. New rules are added based
on the notion of reducing the errors in the training examples. Since different task-specific
knowledge is needed for different tasks, the rules designed for one task usually ca;nnot be
generalized to another task. To circumvent the above difficulty, task portability research
should be focused on a methodology that will generalize easily. Spoken dialogue systems
have also been designed to study other research issues such as discourse analysis, dialogue
modeling, natural language understanding and language generation.

In Table 1, we summarize some of the issues related to speech recognition and un-
derstanding. We use the DARPA Naval Resource Management task and the ATIS task
as examples. It is clear that speech understanding system addresses some of the fun-
damental research issues of human-machine communication. First, the task vocabulary
is often open that the user is not constrained to stay within a fixed vocabulary. The
speech format is usually spontaneous with an implied spoken disfluency. Detection and
rejection of extraneous speech events become essential in spoken language system design.
New words unknown to the spoken system need to be detected and interpreted. Second,
strict syntactic analysis is now error-prone because the text output from the recognizer is

often ill-formed. Grammars for spoken language are also ill-defined and flexible grammar
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Table 1: Summary of Speech Recognition and Understanding Issues.

Example RM ATIS
Goal Recognition Understanding
Focus Acoustic Modeling All Aspects

Vocab. Size 1000 Words Open
Input Read Speech Spontaneous
New Word None Plenty
Syntax Rigid Flexible
Semantics Not Used Essential
Discourse Not Used Essential
Evaluation Well-Defined Open
Integration Little Plenty
Portability Easy Difficult -
Expectation 5% Error 15% Error

should be used to accommodate for possible incomplete specification of syntactic rules.
Third, semantic analysis becomes an essential system component. Research in knowledge
representation, language acquisition and modeling of meanings is crucial to the success
of spoken language systems. Fourth, discourse analysis and dialogue modeling play an

important role in designing effective interface to enhance human-machine communication.

5.1 Domain-Specific Speech Understanding

- Since text understanding of an unrestrict domain is not a solved problem, most of the
speech understanding scenarios being considered in the research community are all in
limited domain areas, including airline/train information access and flight/train/hotel
reservation. The reader is referred to a pioneering example of the MIT VOYAGER system
[81], which is a spoken language system for guiding users to find places in Cambridge. It
has a multimedia output, including speech, graphics, map and text feedback to help the
user. Multi-lingual VOYAGER systems have also been developed (e.g. [23]). The same
strategy has also been extended to the MIT PEGASUS system, which is a sboken language
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interface, connecting to an on-line flight database to enable users to book real flights [82];
and the MIT GALAXY system, which is a telephone-based spoken language interface for
accessing on-line information [24].

Conventional text based understanding approaches are predominantly syntax-driven
(e.g. [67]). They usually assume that a complete set of grammatical rules can be compiled
to perform whole-sentence parsing. Since the text input to the language anaplyZer in a spo-
ken language system is typically ill-formed because it is produced by an imperfect speech
recognition system, syntax-based approaches often fail miserably because a complete parse
of the text is usually difficult, if not possible, for spoken inputs.

Because of the above limitations, some researchers have adopted semantics-driven ap-
proaches (e.g. [77]), relying on the detection of meaningful words and key phrases that
bear semantic cues and ignoring events that are not relevant to understanding. Although
such approaches may not be applicable to analyzing complex languages, they offer a good
compromise in dealing with domain-specific, spontaneous utterances. Another alternative
is to allow extraction of partial or fragmental parses and then glue them together to form
a sentence level full or partial understanding (e.g. [68]). Both of the semantics-driven and
robust parsing strategies make it east to achieve some form of rule-based text understand-
ing via converting the text information into meaningful messages usually represented by
a semantic frame (e.g. [31]). One can imagine the semantic frame being a structure that
contains all the information needed to achieve a complete understanding. For example, in
flight reservation, the semantic frame typically consists of all the information required to
issue a airline ticket.

Recently, new stochastic semantic modeling algorithms have been proposed to learn
semantic models and constraints from examples (e.g. [39, 22, 48, 55, 69]). Following
the formulation in [55], we next illustrate how to design an integrated spoken language

understanding systems.

5.2 Pattern Recognition Approach

We assume a source-channel speech generation model shown in Figure 4, in which the
message source, M, contains meaning concept, C, and an associated sequence of words.
W. Because of the uncertainty and inaccuracy in converting from message to speech.

S, we model the conversion process as a noisy channel. Message understanding is then
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Message Noisy Speech
———] ——>
Source Channel Signal
_Speech | Channel | Message
Signal Decoding Content

Figure 4: Source-channel model of speech generation and message understanding

formulated as a mazimum a posteriori (MAP) decoding problem, as shown in Figure 4.
Instead of working with the speech signal 5 directly, one way to simplify the problem is
to assume that S is first parametrically represented as a sequence of acoustic vectors A.

We then use the Bayes rule to reformulate the decoding problem as follows,
: = P )-P(M ’
argmax P(M|A) = argmax P(A|M) - P(M), (1)

where T is the set of all possible messages, P(A|M) is the conditional probability of the
acoustic vector sequence, A, given a particular message M, and P(M) is the a priori
probability of generating the particular message M. We assume M can be characterized
as a pair of concept and word sequences, (C,W), where W is the sequence of words
associated with the speech or acoustic signal, A, and C is the concept sequence embedded
in the message with each concept ¢; in C corresponds to the word w; in W. Since each
concept represents a semantic attribute for the particular domain of the message, C' can
be used to infer the meaning embedded behind the message with W encoding the value of
the semantic attribute for further processing. For example, a particular ¢; could represent
the time concept and the word w;="3pm” indicates a particular time, three o’clock in the
~ afternoon, is referred to in the message. We can even encode the phrase "three o’clock in
the afternoon” as ”time.15”. Therefore the problem becomes finding the most likely pair

of concept and word sequence such that
; = arg P(AW) - P(W|C)- P(C 2
argmax P(M|A) = argmax P(A|W) - P(W|C) - P(C) (2)

where M = (C,W). In the first term of the right-hand side of 2 we assume the acoustic
signal only depend on the words being uttered and is independent of the concept being

expressed. This gives the first term, P(A

W), which is often referred to as an acoustic
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model in speech recognition. The second term, P(W|C'), is referred to as a concept-specific
em language model. The last term. P(C') is called a concept model.

The noisy channel in Figure 4 is a model jointly characterizing the message generation
mechanism, the speech production system, the speaker variability, the speaking environ-
ment, and the transmission medium. Since it is not feasible to have a complete knowledge
about such a noisy channel, the statistical approach often assumes particular paramet-
ric forms for Py(A|W), P,(W|C) and P,(C), i.e. according to specific models. All the
parameters of the statistical models (i.e. € , v and w) needed in evaluting the acoustic
probability, Ps(W|A), the language probability, P,(W|C'), and the concept probability
P,(C) are usually estimated from a large collection (the so-called training set) of speech,
text and concept-annotated training data.

Detail of the above formulation and the application to the ATIS task can found in
[55]. Extensions to it can also be found in [69, 48]. The readers are also referred to other
pattern recognition approaches to speech and language processing problems, including
speech recognition (e. g. [61]), part of speech tagging (e. g. [14]), machine translation

(e.g. [10]), and integrated speech and language knowledge sources (e.g. [11]).

5.3 Robust and Flexible Speech Understanding

As spoken language systems or spoken dialogue systems are being evaluated for wider
usage in real-world applications, it is found that they are not sufficient to cope with the
utterance variation inherent in a large user population.

Conventional spoken language systems try to decode the whole input utterance with a
pre-defined set of task cbnstraints, including the fixed task vocabulary and the language
models, and match every part of the input uniformly. For in-grammar sentence patterns,
the use of a rigid task grammar, which is compiled from a set of task knowledge and
real examples, is usually quite effective. However, in real-world environments, we have
observed a large number of out-of-grammar utterances even after the task grammars had
been tuned by human experts during the trial period. These samples include extraneous
words, hesitations, repairs and unexpected expressions. There are also cases the user
utterances are out-of-task, i.e. they have nothing to do with the task. Such utterances are
usually difficult to identify and they make the systems hard to respond properly.

In the meantime, most of the mis-recognized utterances contain some key phrases that
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are task-related and may lead to partial or full understanding. Flexible speech under-
standing should be able to detect semantically significant parts and reject irrelevant parts.
In a specific task domain of a transaction or information retrieval system, it is possible to
make sense with key words or phrases. Therefore, an approach based on their detection
is attractive. By relaxing the grammatical constraints and focusing on the key words and
phrases, it will accept a wider variety of utterances than rigid sentence gra;mma,rs can.
Such a detection-based speech understanding system consists of the following steps

[38]:

1. Key Phrase Detection: A set of key phrases are detected using a set of phrase sub-
grammars specific to the dialogue state. The key phrases are labeled. with semantic
tags, which are useful in the sentence-level parsing and they lead to a direct sentence-

level understanding.

2. Key Phrase Verification: The detected key phrases are verified and assigned confi-
dence measures. This process eliminates false alarms and rescores the verified can-
didates. The verifier is constructed with acoustic subword and anti-subword models

which test the individual subwords of the recognized results [74].

3. Sentence Parsing and Detection: The key phrase candidates are connected into
sentence hypotheses using task-specific semantic knowledge sources. A parser [38] is

used to construct string hypotheses that satisfy the semantic constraints.

4. Sentence Verification and Rescoring: The semantically valid sentence hypotheses are
verified and rescored with detailed classification and verification models by repro-

cessing the speech input.

The above robust understanding strategy has been tested on utterances collected in a
real-world application trial. Three categories of exa,'mples, in-grammar, out-of-grammar,
and out-of-task utterances, have been evaluated. When compared with results obtained
with the conventional approach of using a set of rigid grammars, we found the detection-
based understanding approach gives about the same semantic frame recognition accuracy
for in-grammars utterances. Furthermore, it achieves a much better semantic frame ac-
curacy for both out-of-grammar and out-of-task utterances. However, more research is

required to improve further the handling of ill-formed utterances [38].
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6 Real-World Spoken Dialogue: Research Issues

We now address issues related to designing real-world spoken dialogue systems. We use a
voice-based car reservations (VBCR) system as an example. The VBCR system is a pro-
totype trial system for making car reservations by phone via speech input. Speech output
is also used to generate voice prompt to communicate with the user. The information pro-
vided by the user includes account number, pick-up and drop-off locations, date, time, and
flight numbers. It can be considered as a voice form filling application that allows users
to fill all the fields on a form with speech utterances containing field-specific information.
Two parallel efforts were carried out. The first was fo implement such a prototype using
a commercially available ASR software package [47]. The other is to start with a research
algorithm and conduct a study on what’s needed to realize such a real-world application.

The original intent was to let the user fill in, at a time, as many fields in the reser-
vation form as possible based on a mized-initiative dialogue strategy similar to what’s
adopted in the ATIS evaluation. Since there were not enough application-specific dialogue
examples to train the language models for speech recognition and for dialogue processing,
it was soon discovered that mixed-initiative dialogue gave a poor performance with the
commercial ASR package. Three key improvements were soon adopted. First, a large
set of telephone based training data was provided to the software provider to train an
improved set of subword models. Second, the dialogue was constrained so that the user
only fill in on‘e field at a time. The constraints were imposed through a set of field-specific
voice prompts. Third, the grammar for each field was manually adjusted based on the
trail sample collected and it was defined using a deterministic finite-state grammar. The
reason for this is partly due to the realistic limitation that it is not possible to have col-
lected enough application-specific dialogue examples to build reliable stochastic language
models and dialogue models.

In contract to the mixed-initiative strategy, this is a system-initiative dialogue strategy.
similar to what’s adopted in the MIT PEGASUS [82] system, which is more appropriate
for this type of real-world applications. In a system-initiative dialogue mode, the system
expects the user to provide specific information. The dialogue between the user and the
system is therefore somewhat restrictive in the sense that the system initiates the dialogue
by soliciting this information from the user through a field-specific voice prompt request.

Usually, the prompt constrains the user voice input so that the dialogue is carried out in
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an unambiguously manner. For experienced users, this is an efficient way to get the job
done in a short amount of time (e.g. 2 minutes per transaction session). However, this
type of dialogue is usually not natural. It sometimes leads to unrecoverable difficulty and
frustration for inexperienced users.

Based on our parallel study in enhancing our research algorithm to handle such a
system-initiative dialogue strategy, we found the following: (1) It is not easy to have
available a large set of dialogue examples to design reliable stochastic language models for
every new dialogue application; (2) Semantic tagging for each new application is labor-
intensive; (3) Domain coverage based on a small set of dialogue examples is poor; (4)
High performance task-independent acoustic models are required for robust recognition
of utterance in different tasks; (5) Task-dependent acoustic models, such as alphabet and
digit models, give better performance than task-independent models when the test data are
from these tasks (e.g. alpha-digit recognition); (6) High performance confidence measures
are required to verify if the input utterances are valid so that an intelligence speech
interface can be designed to help with voice repairs and confirmation and rejection of
invalid input; (7) Human factors research is essential for enhancing spoken language system
usability and portability. Although some of the abovementioned issues can be addressed
with the robust speech understanding algorithm discussed in the previous Section, there
are still many open research issues. We briefly state some of them in the following. Hope

this will inspire new research directions.

6.1 Continuing Research Issues

It is clear that spoken langué,ge system research encompasses automatic speech recognition,
natural language processing and human-machine interface technology. Many researchers
have issues challenges to this exciting new research area. A good example can be found
in the collective report by Cole et al [15]. '

In order to realize a usable spoken language system, a number of new research advances
are needed. These enhancements can be summaried in four key areas, namely: (1) im-
proving ASR performance; (2) handling flexible subgrammars; (3) incorporating utterance
verification; and (4) automatic task and dialogue generation with improved semantics and

language processing. We discuss these enhanced features in more detail in the following.
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6.1.1

Improving ASR Performance

Task-dependent and task-independent acoustic modeling: It is well known that task-
dependent training usually achieves the best performance for a specific task. How-
ever, it is not possible to collect a large amount of training data for every new task.
For some common tasks, such as digit and alphabet recognition, it is always benefi-
cial to have models trained on existing large databases. This can also be extended
to other useful tasks such as date, time and natural number recognifion. Language
models can also be trained this way. However, general acoustic models that can be
used for other tasks with using specific task knowledge are also important. Research
here includes [44]: (1) the design of general training databases for all general tasks;
(2) fundamental unit selection and modeling strategy that can be generalized to
many tasks; (3) how to learn from the vocabulary and grammar of a particular task
and design the acoustic models accordingly without the need to collect examples of
speech data for the task; and (4) how to adapt to a particular task based on a small

set of acoustic and language models.

Robustness improvement: Recognition performance of a system is often degraded
due to mismatch conditions existing between training and testing. Robust feature
extraction, signal conditioning, speaker normalization, and speaking environment
compensation are a few things that can be incorporated to improve system perfor-
mance. Real time i-rnplementat'mn issues need to be considered also when robust

techniques are being incorporated.

On-line speaker adaptation: Since a user is likely to stay on a dialogue‘system longer,
some of the recognized utterances in the earlier part of the dialogue session can
be used to perform speaker and environment adaptation so that the recognition
performance can be improved for the later part of the dialogue session. On-line
unsupervised adaptation needs to be done here because it is not easy to acquire

supervision information in an operational system environment.

6.1.2 Handling Flexible Subgrammars

Definition of localized subgrammars: Instead of using the current FSG’s, the em-
bedded constraints in FSG should be relaxed so that ungrammatical utterances can

also be handled. Each localized subgrammar is typically composed of keywords, key-
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phrases and their contexts. They are semantically tagged and designed to handle
only the relevant semantic events in a particular field, e.g. date, time and account
number recognition. Stochastic FSG’s can also be used if we have enough training

data to train them.

o Keyword and phrase detection based on localized subgrammars: Detecting keywords
and key-phrases in a subgrammar is usually easier than strajghf recognition. High
detection accuracy can be achieved even with less accurate acoustic and language
models. However, reducing false alarms is an importance research topic. This can
be done with the combination of utterance verification and task-specific semantic

constraints.

o String hypothesization and verification based on connected subgrammars: The above
semantically tagged subgrammars can be connected to form meaning string hypothe-
ses. They are then verified using the whole speech utterance to choose the most
likely string that is also semantically meaningful. Many subgrammars can also be
connected into a single recognition grammar using a set of relaxed global semantic

constraints so that multiple fields can be filled in with a single spoken utterance.

o Automatic subgrammar and vocabulary generation: The current design procedure
starts with a given task definition and constructs all subgrammars and vocabulary
words manually based on human expert knowledge. This is a time-consuming process
especially for defining new tasks. It is also highly error-prone. Research is needed in
the area of automatic subgrammar and vocabulary generation. Ta,sk‘representation
(could be from database schema) and interface between task representation and
generation needs to be established so that task mapping to spoken language systems

can be simplified.

6.1.3 Incorporating Utterance Verification

o [tterance verification to produce word and phrase level confidence: Instead of doing
the conventional one-pass recognition, which was designed to handle well-formed
utterances, recognition for ill-formed utterances should be done by keyword and
phrase detection followed by utterance verification. Issues related to task dependency

and verification strategies need to be studied.
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o Robust hypothesis pruning based on partial utterance verification: As discussed above.
keyword and phrase detection is likely to produce a large number of faise alarms.
Utterance verification is a robust way to perform hypothesis pruning. The word and

phrase level confidence scores are useful for reducing false alarms.

o Voice repair and prompt generation based on phrase confidence: The word and phrase
level confidence scores are key indicators about how well an utterance is being rec-
ognized. An intelligent user interface can use this information to decide the level of
voice confirmation, how much to prompt, what to prompt, and when the user needs

help through voice repair.

6.1.4 Semantics and Language Processing

o Semantics dictionary: In order to accomplish some form of understanding, more
research in semantics representation and modeling is needed: Some research tools.
such as a large machine-readable dictionary with semantic definitions for words, are

keys to the advancement in this key area.

o Language and knowledge acquisition: Human beings acquire language and related
knowledge sources in a natural way through exposure to the vast learning environ-
ments offered in their families, schools and societies. It is important for machines
to be quipped with learning capabilities to acquire language either automatically or
semi-automatically. This set of knowledge is crucial for designing large-scale spoken

language systems.

e Portability research: Up to this point most of the dialogue systems are designed
manually based on human expert knowledge. Some of the rules generated in one
task by a designer may not apply to other tasks or other users. It is desirable to
have an ability for automatic dialogue generation based on task definition. This is

an important portability research topic.

7 Summary

We have briefly reviewed the present state of spoken language processing. An extensive list

of references are also included for further reading although some of them are not referred to
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in the text of this paper. In recent years, we have learned a great deal about how to build
and efficiently implement laboratory spoken language systems. However there remain a -
whole range of fundamental questions for which we have no definitive answers. Spoken
language processing is an exciting research area. It is also a multi-discipline area that it is
not easy for a single research group to solve all the problems. Collaborative research has
shown to be a powerful way to enhance our current capabilities. In order to make progress
in Chinese speech and language processing, it is important for the research community to
establish an infrastructure to develop large scale speech and language corpora, to share
knowledge and tool resources, to improve communication among different groups, and to
come up a good common problem that is challenging enough to warrant new research
advances. It is also crucial to work on real-world problems because of the inherent nature
of spoken language processing. This new area is still in its infancy. Many advances are
vet to be made. It is up to this community to make contributions to the Chinese language
processing part so that we can get connected to the brave new world of multi-lingual,

human-human and human-machine communication.
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