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ABSTRACT

The last five years have witnessed unprecedented progress in human language technol-
ogy (HLT) — speech recognition and language understanding capabilities are improving
at a very rapid rate. To meet the challenges of developing a language-based interface to
help users solve real problems, however, we must continue to improve the core technolo-
gies while expanding the scope of the underlying HLT base. This paper outlines my view
on what are some of the unmet research challenges, including the need to work in real
domains, dialogue modelling, dealing with unknown words, spoken language generation,
and portability across domains and languages.

1 Introduction

In the past several years, we saw the emergence of a new breed of computer-based speech
processing systems known as spoken language (or speech understanding) systems. The
development of these systems is motivated by the belief that many tasks appropriate for
human-computer interaction using speech fall into the realm of interactive problem solv-
ing. In these applications, whether it be searching for a restaurant or buying an airplane
ticket, the solution is often built up incrementally, with the user and the computer both
playing an active role in the conversation. To achieve this goal, several language-based
technologies must be developed and integrated. On the input side, speech recognition
must be combined with natural language processing in order to derive an understanding
of the spoken input, often in the context of previous parts of the verbal dialogue. On
the output side, some of the information that the user seeks as well as any clarification
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dialogue generated by the system must be converted to natural sentences and, possibly,
delivered as verbal responses.

Research and development . of spoken language systems has received considerable
world-wide attention since the late eighties. In the United States, the Spoken Language
Systems (SLS) Program sponsored by the Advanced Research Projects Agency (ARPA)
of the Department of Defense provided major impetus for steady advances of the nec-
essary technologies along many fronts. In Europe, the SUNDIAL project sponsored by
the Esprit program enjoyed participation from many countries to jointly develop system
that can understand several European languages in multiple domains (including train
reservations and flight information) [1].

Despite significant progress in many areas, the ultimate deployment of speech-based
user interfaces will require continuing improvement of the core human language tech-
nologies and the exploration into many uncharted research territories. The purpose of
this paper is to outline some of these new research challenges. To set the stage, [ will
first briefly introduce the components of a spoken language system, and summarize the
state-of-the-art. Due to personal familiarity, I will draw primarily from my own expe-
rience in developing such systems in the United States. Interested readers are referred
to the recent proceedings of the International Conference of Acoustics, Speech, and Sig-
nal Processing, the Eurospeech Conference, and the International Conference of Spoken
Language Processing. S

2 System Architecture and Research Issues

Figure 1 shows the major components of a typical spoken language system. The spoken
input is first processed through the speech recognition component, whose goal is to con-
vert the speech signal into a set of word hypotheses. These word hypotheses are then
fed to the language understanding component. By combining syntactic and semantic
constraints, this component eventually produces a meaning representation. For informa-
tion retrieval applications illustrated in this figure, the meaning representation can be

-used to retrieve the appropriate information in the form of text, tables and graphics.
If the information in the utterance is insufficient, the system may choose to query the
user for clarification. Speech output can be generated by processing the information
or clarification query through natural language generation and text-to-speech synthesis.
Throughout the process, discourse information is maintained and can be fed back to the
speech recognition and language understanding components. Figure 2 illustrates aspects
of human-machine dialogue, including clarification and anaphoric referencing, in the MIT
VOYAGER domain [2].

The requirement that the system understand verbal commands raises several im-
portant research issues. Perhaps the most important one is the integration of speech
recognition and natural language processing technology to achieve speech understand-
ing. Researchers in each discipline need to investigate how to exchange and utilize ideas
to maximize overall system performance. In some cases, one may have to make funda-
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Figure 1: A generic block diagram for a typical spoken language system.

USER:

VOYAGER:

USER:

VOYAGER:

USER:

VOYAGER:

USER:

VOYAGER:

CAN YOU TELL ME HOW TO GET TO THE CHINESE RESTAURANT

Where are you?

I AM NEAR A BANK:

I know of many banks. Can you specify which one you mean?

THE ONE ON MAIN STREET

The only bank on Main Street that I know of is the Baybank at
226 Main Street in Cambridge. The Chinese restaurants that I
know of are Hong Kong and Royal East. Can you specify which one
you mean? '

THE ONE NEAREST ME

The nearest Chinese restaurant to the Baybank at 226 Main Street
that I know of is the Royal East. I will try to find the best
way to go from the Baybank at 226 Main Street to the Royal East.
(-- Directions --)

Figure 2: Example dialogue in the VOYAGER domain illustrating clarification capabilities.



mental changes in the way systems are designed. For example, most natural language
systems are developed with text input in mind; it is assumed that the entire word string
is known with certainty. This assumption is clearly false for speech input, whereby many
words are competing for the same time span, and some words may be more reliable
than others because of varying signal robustness. Therefore, one may not be able to use
existing natural language systems without making some modifications.

Another issue related to spoken language system development is that the system
must operate in a real or realistic application domain, where domain-specific information
can be utilized to translate spoken input into appropriate actions. For example, the verb
“serve” conveys three entirely different meanings, depending on whether one is discussing
a restaurant, the cities an airline flies to, or a tennis match. Since we are far from being
able to develop systems with unconstrained capabilities, we must select applications
whose domain is limited, but nevertheless useful. Realistic applications are also critical
to collecting data on how people would like to use machines to access information and
solve problems. The use of a constrained task also makes possible rigorous evaluations
of system performance.

Finally, the system must begin to deal with interactive speech, where the computer is
an active conversational participant, and where people produce speech extemporaneously.
Spontaneous speech contains false starts, hesitations, and words and linguistic constructs
unknown to the system. It offers significant challenges to current speech recognition and
natural language systems. To make the interaction flow smoothly, the system must be
able to provide feedback, especially when it is unable to fully interpret the user’s query.

3 State of the Art

This section illustrates the state of the art of spoken language systems research and
development by focusing on the activities in the ARPA Human Language Technology
(HLT) research community in the United States in the common domain called Air Travel
Information Service, or ATIS [3]. ATIS permits users to verbally query for air travel infor-
mation, such as flight schedules from one city to another, obtained from a small relational
database excised from the Official Airline Guide. By requiring that all system develop-
ers use the same database, it has been possible to compare the performance of various
spoken language systems based on their ability to extract the correct information from
the database, using a set of prescribed training and test data, and a set of interpretation
guidelines. Indeed, periodic common evaluations have occurred at regular intervals, and
steady performance improvements have been observed for all systems [4, 5, 6]. Figure 3
shows the error rates for the best ATIS systems, measured in several dimensions over the
past three years. Many of the systems currently run in real-time on standard workstations
with no additional hardware, although with some performance degradation.
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Figure 3: Best performance achieved by systems in the ATIS domain over the past three
years. See text for a detailed description.

3.1 Speech Recognition

Historically, speech recognition systems have been developed with the assumption that
the speech material is read from prepared text. Spoken language systems offer new chal-
lenges to speech recognition technology in that the speech is extemporaneously generated,
often containing disfluencies (i.e., unfilled and filled pauses such as “umm” and “aah,” as
well as word fragments) and words outside the system’s working vocabulary. Thus far,
some attempts have been made to deal with these problems. For example, researchers
have improved their system’s recognition performance by introducing explicit acoustic
models for the filled pauses [7, 8]. Similarly, “trash” models have been introduced to
detect the presence of unknown words [9], and procedures have been devised to learn the
new words once they have been detected [10].

As shown in Figure 3, the speech recognition performance has improved steadily
over the past three years. Word error rate (WE) decreased by nearly six-fold while
sentence error rate (SE) decreased more than three-fold in this period. In both cases, the
reduction in error rate for spontaneous speech has followed the trend set forth for read
speech, namely halving the error every two years. In the most recent formal evaluation
of the ARPA-SLS Program in the ATIS domain, the best system achieved a word error
rate of 3.3% and a sentence error rate of 18% [6]. The vocabulary size was more than
2,500 words, and the bigram and trigram language models had a perpexity of about 20
and 14, respectively. Note that all the performance results quoted in this section are for



the so-called “evaluable” queries, i.e., those queries that are within the ATIS domain and
for which an appropriate answer is available from the database.

3.2 Language Understanding

Traditional natural language analysis is predominantly syntax-driven - a complete syn-
tactic analysis is performed which attempts to account for all words in an utterance.
However, it didn’t take long for researchers to discover that such an approach [11, 12],
while providing some linguistic constraints to the speech recognition component and
a useful structure for further linguistic analysis, can break down dramatically in the
presence of unknown words, novel linguistic constructs, recognition errors, and some
spontaneous speech events such as false starts. Besides, spoken language tends to be
quite informal — people are perfectly capable of speaking, and willing to accept, un-
grammatical sentences. In contrast, other researchers have adopted a semantic-driven
approach, deriving a meaning representation by spotting key words and phrases in the
utterance [13]. While this approach loses the constraint provided by syntax, and may
not be able to adequately interpret complex linguistic constructs, the need to accommo-
date spontaneous speech input has outweighed these potential shortcomings. To date,
almost all systems have abandoned their original goal of achieving a complete syntactic
parse of every input sentence to a more robust strategy that could still answer when a
full parse failed [14, 15, 16]. This can be achieved by identifying parsable phrases and
clauses, along with a mechanism for gluing them together to form a complete meaning
analysis [15]. Still others attempts to deal with the variabilities by deriving a seman-
tic representation directly from the surface representation through stochastic modelling
techniques [17, 18, 19].

It is difficult to objectively evaluate the performance of a natural language compo-
nent, primarily because establishing the reference answer to a query may be difficult.
For example, should the correct answer to the query, “Do you know of any Chinese
restaurants?” be simply, “Yes,” or a list of the restaurants that the system knows?

The ARPA-SLS community has adopted the Common Answer Specification (CAS)
evaluation protocol, whereby a system’s performance is determined by comparing its
output, expressed as a set of database tuples, with one or more predetermined reference
answers [21]. The CAS protocol has the advantage that system evaluation can be carried
out automatically, once the principles for generating the reference answers have been
established and a corpus has been annotated accordingly. Since direct comparison across
systems can be performed relatively easily with this procedure, the community has been
able to achieve cross fertilization of research ideas, leading to rapid research progress.
Figure 3 shows that language understanding error rate (NL) has declined by more than
two fold in the past three years.? This error rate is measured by passing the transcription

2The error rate, for both text (NL) and speech (SLS) input increased somewhat in the latest round
of evaluation. This is largely due to the fact that the database has been increased from 11 cities to 46 in

1993, and some of the travel-planning scenarios used to collect the newer data were considerably more
difficult.



of the spoken input, after removing partial words, through the natural language compo-
nent. In the most recent formal evaluation in the ATIS domain, the best natural language
system achieved an understanding error rate of 9.3% on all the “evaluable” sentences in
the test set [6]. '

3.3 Speech Undérstanding

One of the critical research issues in the development of spoken language systems is
the mechanism by which the speech recognition component interacts with the natural
language component in order to obtain the correct meaning representation. At present,
the most popular strategy is the so-called N-best interface [22, 23, 24], in which the
recognizer can propose its best N complete sentence hypotheses® one by one, stopping
with the first sentence that is successfully analyzed by the natural language component.
In this case, the natural language component acts as a filter on whole sentence hypotheses.
However, it is still necessary to provide the recognizer with an inexpensive language model
that can partially constrain the theories. Usually, a statistical language model such as a
bigram is used, in which every word in the lexicon is assigned a probability reflecting its
likelihood in following a given word.

In the N-best interface, a natural language component filters hypotheses that span
the entire utterance. Frequently, many of the candidate sentences differ minimally in
regions where the acoustic information is not very robust. While confusions such as “an”
and “and” are acoustically reasonable, one of them can often be eliminated on linguistic
grounds. In fact, many of the top N sentence hypotheses could have been eliminated
before reaching the end if syntactic and semantic analyses had taken place early on
in the search. One possible control strategy, therefore, is for the speech recognition
and natural language components to be tightly coupled, so that only the acoustically
promising hypotheses that are linguistically meaningful are advanced. For example,
partial theories are arranged on a stack, prioritized by score. The most promising partial
theories are extended using the natural language component as a predictor of all possible
next-word candidates; any other word hypotheses are not allowed to proceed. Therefore,
any theory that completes is guaranteed to parse. We have found that such a tightly
coupled integration strategy can achieve higher performance than an N-best interface
with a considerably smaller stack size |25, 26].

The performance of the entire spoken language systems can be assessed using the
same CAS protocol for the natural language component, except with speech rather than
text as input. Figure 3 shows that this “speech understanding” error rate (SLS) has
fallen from 42.6% to 13.2% over the three year interval. It is interesting to note that this
error rate is considerably less than the sentence recognition error rate, suggesting that a
large number of sentences can be understood even though the transcription may contain
€eITOors.

3N is a parameter of the system that can be set arbitrarily as a compromise between accuracy and
computation.



4 Future Research Challenges

As we can see, significant progress has been made over the past few years in research and
development of systems that can understand spoken language. To meet the challenges of
developing a language-based interface to help users solve real problems, however, we must
continue to improve the core technologies while expanding the scope of the underlying
HLT base. In this section, I will outline some of the new research challenges that have
heretofore received little attention.

4.1 Working in Real Domains

The rapid technological progress that we are witnessing raises several timely questions.
When will this technology be available for productive use? What technological barriers
still exist that will prevent large-scale HLT deployment? 1 believe that an effective
strategy for answering these questions is to develop the underlying technologies within
real applications, rather than relying on mock-ups, however realistic they might be, since
this will force us to confront some of the critical technical issues that may otherwise
elude our attention. Consider, for example, the task of accessing information in the
Yellow Pages of a medium-sized metropolitan area such as Boston — a task that can be
viewed as a logical extension of the VOYAGER system we developed in 1989 [2]. The
vocabulary size of such a task could easily exceed 100,000, considering the names of the
establishments, street and city names, and listing headings. A task involving such a huge
vocabulary presents us with a set of new technical challenges. Among them are:

e How can adequate acoustic and language models be determined when there is little
hope of obtaining a sufficient amount of domain-specific data for training?

e What search strategy would be appropriate for very large vocabulary tasks? How
can natural language constraints be utilized to reduce the search space while pro-
viding adequate coverage?

e How can the application be adapted and/or customized to the specific needs of a
given user?

e How can the system be efficiently ported to a different task in the same domain
(e.g., changing the geographical area from Boston to Washington DC), or to an
entirely different domain (e.g., library information access)?

There are many other research issues that will surface when one is confronted with
the need to make human language technology truly useful for solving real problems,
some of which will be described in the remainder of this section. Aside from providing
the technological impetus, however, working within real domains also has some practical
benefits. While years may pass before we can develop unconstrained spoken language
systems, we are fast approaching a time when systems with limited capabilities can help
users interact with computers with greater ease and efficiency. We believe that the
time is ripe for us to demonstrate the usefulness of the technology. Working on real



applications thus has the potential benefit of shortening the interval between technology
demonstration and its ultimate use. Besides, applications that can help people solve
problems will be used by real users, thus providing us with a rich and continuing source
of useful data.

4.2 Dialogue Modelling

Human verbal communication is a two-way process involving multiple, active partici-
pants. Mutual understanding is through direct and indirect speech acts, turn taking,
clarification, and pragmatic considerations. Our experience with the development of the
PEGASUS system for on-line travel planning has convinced us that an effective spoken
language interface for information retrieval and interactive transactions must incorpo-
rate extensive and complex dialogue modelling — initiating appropriate clarification sub
dialogues based on partial understanding, and taking an active role in directing the
conversation towards a valid conclusion. There has been some theoretical work on the
structure of human-human dialogue [28], but this has not yet led to effective insights for
building human-machine interactive systems. The importance of continuing research in
human /computer dialogue modelling cannot be overstated.

An example of the beginning of dialogue-based research using a real application back-
end is the MIT PEGASUS system. PEGASUS is an outgrowth of the ARPA-SLS ATIS
common task development effort. It is a spoken language interface connected to an on-
line flight database — the American Airlines EAASY SABRE system with over 700,000 active
subscribers. The system leverages off our spoken language technology development in the
ATIS domain, and enables users to book real flights using EAASY SABRE. The input query
is transformed by the speech understanding system to a semantic frame representation
that captures its meaning. The System Manager transforms the semantic representation
into an EAASY SABRE command, transmits the command to the application backend,
formats and interprets the resulting information, and generally manages the dialogue
with the user. Figures 4 and 5 contains an example of the log of an actual round-trip
booking to illustrate the system’s capability.

The system is fully functional in the sense that members of our group have been able
to use it to make actual travel arrangements since last spring, using naturally spoken
English. In a recent evaluation [27], the system was able to complete 7 out of 10 actual
bookings. For experienced users, a round-trip transaction can be completed using 10
queries in about 5 minutes of elapsed time.

4.3 The New Word Problem

Yet another important issue concerns unknown words. The traditional approach to spo-
ken language recognition and understanding research and development is to define the
working vocabulary based on domain-specific corpora [29]. However, experience has
shown that, no matter how large the size of the training corpora, the system will in-
variably encounter previously unseen words. This is illustrated in Figure 6. For the



USER: I WANT TO GO FROM BOSTON TO SAN FRANCISCO
PEGASUS: What date will you be travelling on?

USER: OCTOBER TWENTIETH
PEGASUS: Here are the flights from Boston to San Francisco on Wednesday October
twentieth.

FLIGHT FROM TO DEPARTURE ARRIVAL NSTOPS
DL 565 BOS SFO 7:00 A.M. 11:55 A.M. 1

US 31 BOS SFO 7:00 A.M. 12:03 P.M.
Nw 181 BOS SFO 7:30 A.M. 10:58 A.M.
UA 31 BOS SFO 8:10 A.M. 11:23 A.M.
NWw 353 BOS SFO 8:15 A.M. 1:18 P.M.
UA 59 BOS SFO 9:05 A.M. 12:34 P.M.

O O W N
O - O O

You can ask for more flights.
USER: I’D LIKE A NONSTOP UNITED FLIGHT :
PEGASUS: Here are the non-stop United flights from Boston to San Francisco on
Wednesday October twentieth.
FLIGHAT @~ FROM TO DEPARTURE  ARRIVAL NSTOPS
1 UA 31 BOS SFO 8:10 A.M. 11:23 A.M. O
2 UA 59 BOS SFO 9:05 A.M. 12:34 P.M. O
3 UA 93 BOS SFO 5:10 P.M. 8:23 P.M. 0

USER: BOOK THE THIRD FLIGHT PLEASE
PEGASUS: Please wait while I determine what fares are available for this flight.
The following fares are available. Which fare class would you like?

ONE WAY FARE CLASS MIN-STAY MAX-STAY RETURN REQ’D
1 $ 214. THRIFT DISCOUNT YES 30 YES
2 $ 234. COACH DISCOUNT YES 30 YES
3 $ 294. THRIFT DISCOUNT  YES NO YES
4 $ 304. COACH DISCOUNT YES 30 YES
USER:  COACH DISCOUNT
PEGASUS: The following fares are available. Which fare class would you like?
ONE WAY FARE CLASS MIN-STAY MAX-STAY RETURN REQ’D 4
1 $ 234. COACH DISCOUNT YES 30 YES
2 $ 304. COACH DISCOUNT YES 30 YES
3 $ 336. COACH DISCOUNT 31 NO YES

Figure 4: An example of an actual verbal booking dialogue using PEGASUS. Due to space
limitations, irrelevant parts of the system’s responses have been omitted.
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USER:

PEGASUS:

USER:

PEGASUS:

USER:

PEGASUS:

USER:

PEGASUS:

THE CHEAPEST ONE

I’11 book United flight 93 from Boston to San Francisco on Wednesday
October twentieth for you. Your reservation has been entered.
Now I’11 help you with the return flight.
What date will you be returning on?
ON SUNDAY
Here are the United flights from San Francisco to Boston on Sunday
October twenty-fourth.

FLIGHT * FROM TO DEPARTURE ARRIVAL NSTOPS

1 UA 92 SFO BOS 7:45 A.M. 4:06 P.M. O

2 UA 20 SFO BOS 1:30 P.M. 9:54P.M. O

3 UA 90 SFO BOS 10:10 P.M. 6:32 A.M. O

SHOW ME NONSTOP FLIGHTS LEAVING IN THE MORNING
Here is United flight 92 from San Francisco to Boston on Sunday October
twenty-fourth.
FLIGHT FROM TO  DEPARTURE ARRIVAL NSTOPS
1 UA 92 SFO BOS 7:45 A.M. 4:06 P.M. O

I’LL TAKE THIS FLIGHT :
Please wait while I determine what fares are available for this flight.
I’11 book United flight 92 from San Francisco to Boston on Sunday
October twenty-fourth for you. Your reservation has been entered.
Give me a moment to confirm your reservation.
Here’s your ticket summary.
You saved a total of 894 dollars over regular coach fare.
Based on fares in effect today, your airline tickets will cost:
Each adult:  488.00 USD
Fare codes: QE70NQ, QE7PNQ
Adults: 1
Total fare: 488.00 USD

Please wait while I retrieve your itinerary...

STEPHANIE SENEFF Price:  488.00

Total: 488.00

Date Flight Class From  To Leave Arrive
1 0CT20 UA 93 Q BOS SFO 510P 823P
0CT24 UA 92 Q SFO BOS 745A 406P

Can I help you with something else?

Figure 5: Continuation of the example shown in Figure 4.

11



1076 — : ' ' '

WSJ
1005

ue Words

@
S
S

I-VOYAGER

1073 A
VOYAGER

1072 1 F-ATIS

Number of Uni

1 OA1 I T T T T
1002 1003 104 1005 1006 107 1078

Number of Training Words
(a)

100.0 ' ' ‘ ! ‘
50.0

—h
o O
o O
|

I-VOYAG
F-ATIS

% New Words

-
o
1

VOYAGER

Q
(&)
1

WSJ

ATIS
0-1 T 1 T I T

1002 1003 1004 1005 1006 107 1018

Number of Training Words

(b)

Figure 6: (a) The number of unique words (i.e., task vocabulary) as a function of the
‘size of the training corpora, for several spoken language tasks, and (b) The percentage
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corpora used to determine the vocabulary empirically. The sources of the data are:
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NYT=New York Times; WSJ=Wall Street Journal; and CITRON=Directory Assistance.
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ATIS task, for example, a 100,000-word training corpus will yield a vocabulary of about
1,000 words. However, the probability of the system encountering an unknown word, is
about 0.002. Assuming that an average sentence contain 10 words, this would mean that
approximately one in 50 sentences will contain an unknown word.

In a real domain such as Electronic Yellow Pages, a larger fraction of the words
uttered by users will not be in the system’s working vocabulary. This is unavoidable
partly because it is not possible to anticipate all the words that all users are likely to
use, and partly because the database is usually changing with time (e.g., new restaurants
opening up). In the past, we have not paid much attention to the unknown word problem
because the tasks we have chosen assume a closed vocabulary. In the limited cases where
the vocabulary is open, unknown words account for a small fraction of the word tokens
in the test corpus. Thus researchers can either construct generic “trash word” models
and hope for the best, or ignore the unknown word problem altogether and accept a
small penalty on word error rate. In real applications, however, the system must be able
to cope with unknown words simply because they will always be present, and ignoring
them will not satisfy the user’s needs - if a person wants to know how to go from MIT
to Lucia’s restaurant, they will not settle for a response such as, “I am sorry I don'’t
understand you. Please rephrase the question.” The system must be able not only to
detect new words, taking into account acoustic, phonological, and linguistic evidence,
but also to adaptively acquire them, both in terms of their orthography and linguistic
properties. In some cases, fundamental changes in the problem formulation and search
strategy may be necessary.

4.4 Spoken Language Generation

With few exceptions [2, 30, 27], current research in spoken language systems has focused
on the input side, i.e., the understanding of the input queries, rather than the conveyance
of the information. While the systems may not be entirely deaf, they are certainly mute!

Spoken language generation is an extremely important aspect of the human-computer
interface problem, especially if the transactions were to be conducted over a telephone.
It is also crucial for the task of speech-to-speech translation. We must develop models
and methods that will generate natural sentences appropriate for spoken output, across
many domains and languages [31]. In many cases, we must pay particular attention to
the interaction between language generation and dialogue management — the system may
have to initiate clairifcation dialogue to reduce the amount of information returned from
the backend, in order not to generate unwieldy verbal responses. On the speech side,
we must continue to improve speech synthesis capabilities, particularly with regard to
the encoding of prosodic and paralinguistic information such as emotion and mood. As
is the case on the input side, we must also develop integration strategies for language
generation and speech synthesis. Finally, evaluation methodologies for spoken language
generation technology must be developed, and comparative evaluation performed.
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4.5 Portability

Currently, the development of speech recognition and language understanding technolo-
gies thas been domain specific, requiring a large amount of annotated training data.
However, it may be costly, or even impossible, to collect a large amount of training data
for certain applications, such as Yellow Pages.

Therefore, we must address the problems of producing a spoken language system in a
new domain given at most a small amount of domain-specific training data. To achieve
this goal, we must strive to cleanly separate the algorithmic aspects of the system from the
application-specific aspects. We must also develop automatic or semi-automatic methods
for acquiring the acoustic models, language models, grammars, semantic structures for
language understanding, and dialogue models required by a new application. The issue of
portability spans across different acoustic environments, databases, knowledge domains,
and languages. Real deployment of spoken language technology cannot take place without
adequately addressing this issue.

5 Concluding Remarks

In this paper, I have attempted to outline some of the important research issues that
must be addressed before spoken language technology can be put to productive use. The
timing for the development of human language technology is particularly opportune, since
the world is mobilizing to develop the information highway that will be the backbone of
future economic growth. Human language technology will play a central role in providing
an interface that will enable users to efficiently access, process, and manipulate a vast
amount of information. While much work needs to be done, the progress made collectively
by the community thus far gives us every reason to be optimistic about fielding such
systems, albeit with limited capabilities, in the future.
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