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Abstract

Statistical approaches to natural language parsing and interpretation have a number of
advantages but thus far have failed 1o incorporate compositional generalizations found in
traditional structural models. A major reason for this is the inability of most statistical
language models being used to represent relational constraints, the connectionist variable
binding problem being a prominent case. ‘This paper proposes a basis for integrating
probabilistic relational constraints using maximum entropy, with standard compositional

~ feature-structure or frame representations. In addition, because full maximum entropy
is combinatorically explosive, an approximate maximum entropy (AME) technique is
introduced. Asa sample problem, the task of integrating syntactic and semantic constraints

for nominal compound interpretation is considered.
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1 Introduction

The importance of statistical methods in natural language processing has recently been redis-
covered for a number of reasons. A major motivation is the automated acquisition of requisite
information for language processing. The hope from the engineering standpoint is to by-
pass imbractically inﬁtensive manual analysis by mechanically analyzing large online corpora
(Church & Hanks 1990; Hindle 1990; Magerman & Marcus 1990; Smadja 1991). On the other
hand, from the cognitive standpoint, statistical models could overcome many of the traditional
difficulties faced by pure logic-based language acquisition models, such as learning without
negative evidence.

Another of the statistical paradigm’s main advantages is that quantitative measures
facilitate integrating factors along Arvnany different dimensions, a difficult problem in purely sym-
bolic parsing and interpretation models. Syntactic, lexical, semantic, conceptual, and many
other factors all enter in as tendencies rather than rules (Marslen-Wilson & Tyler 1987). Inte-
grating different knowledge sources is particularly important for disambiguation problems that
arise with nominal compounds, adverbial modification, and prepositional phrase attachment.

A third major attraction is the grounding of numeric measures. Since Quillian (1969),
many quantitative approaches to language understanding have been proposed. However, a
major problem with all these approaches is the assumption of large numbers of ad hoc weights
(Wu 1989). To make it plausible that a quantitative model will generalize to interestingly
large domains, the numbers should be justified on some statistical basis; that is, the weights in
principle should be derivable from a set of sample points.

It is a weakness of many statistical NLP proposals, however, that they do not yet
exploit the advances of several decades of structural theories. Any structure must be auto-
matically induced by the models, given only the surface features of the input strings. On the
plus side, this can act as independent validation of linguistic theories if the same structural
categories are induced. But on the minus side, the complexity and kinds of structures are
heavily constrained by the induction model chosen. The current models do not induce gener-
alizations involving the sorts of interacting structural constraints in knowledge-based parsers
and semantic interpreters. Grammar induction methods, for example, work with probabilistic
context-free formalisms (Lari & Young 1990; Fujisaki et al. 1991) rather than unification-based

formalisms. Despite impressive successes, solving the hardest, “last 10%” problems always



seems to demand the additional structure. Structural generalizations, if ‘known, should be built
into the induction model a priori rather than discarded.

In part efforts along these lines have been hindered by one major deficiency among
the statistical methods presently being employed. This is the difficulty of integrating constraints
arising from multiple knowledge sources when there are relational constraints of the kind found
in symbolic models such as unification-based grammars. In this paper’] propose a statistically
grounded model that can integrate probabilistic relational constraints. Two novel contributions

are presented:

¢ Anidealized maximum-entropy treatment of evidential inference in a hierarchical, com-

positional feature-structure space.

o An approximate maximum-entropy (AME) technique that estimates conditional distri-

butions by making structural approximations to the ideal maximum-entropy case.

2 Evidential Interpretation

Consider the nominal compound coast road.! An informal survey prdduced as the most
common interpretations a road (either generic or Highway 1) in or along the coastal area. A
less preferred interpretation was a road amenable to coasting. In addition, though no informant
volunteered the interpretation of a road leading to the coast, all agreed when asked that this
was perfectly normal in contexts like Since the earthquake damaged the only Interstate to the
coast, old Highway 17 will temporarily serve as the main coast road. We will use coast road

as an examl')'le throughout this paper.

!'From the Bfown corpus (Kugera & Francis 1967). In keeping with the healthy movement toward working
on shared data, I have been using the same Brown corpus data as Warren'’s (1978) study of some 4,500 nominal
compounds. My views on nominal compound patterns are discussed in Wu (1990); nominal compounds have a
long history in linguistics (e.g., Lees 1963, 1970; Downing 1977; Levi 1978; McDonald 1982; Leonard 1984).



Relational constraints and feature-structures The choice of structures is at least as critical
to the success of a model as any probabilistic constraint combination method, particularly since
we are not inducing the structures themselves but choosing them a priori. However, as this
is not the focus of the present paper I only summarize the asSumptions here; details may be
found in Wu (1992a). Structures vary in both domain and specificity. A modular ontology
divides representational primitives into a number of linguistically, psychologically, and neuro-
logically motivated modules. These include mental images, lexical semantics, lexicosyntactic
constructions, and the conceptual system. Intermodular structures associate structures across
modules. The notion of ontological modularity is a significant weakening of Fodor’s (1983)
process modularity, insofar as the same processes may span all modules. In the model proposed
these processes are probabilistic. -

Consider the types of information needed to correctly interpret coast road:

1. Specific lexical signification: The word coast used as a noun means a seacoast substan-

tially more often than an unpowered movement.?

2. Abstract semantic schemas and construction signification: Prototypical spatial relation-
ships between a one-dimensional entity (road) and an elongated two-dimensional space
(coast) include parallel containment and linear order locative (i.e., destination). Nominal
compounds are frequently used to express containment relationships, and somewhat less

frequently to express linear order locative relationships.

3. Intermediate conceptual schemas: Most of the time when one thinks about roads in the
context of seacoasts, one thinks not of generic roads but specifically of the subcategory

of roads running along the coast (let’s abbreviate that as coastal road).

4. Specific conceptual schemas: Living on the West Coast, Highway 1 is a frequently used

concept of the coastal road subcategory.

*There are intermediate lexicosyntactic signification pattems that do not appear in the examples here because
of space limitations. For example, the construction coast N is often designates something'related to a seacoast,
as in coast artillery, coast guard, coastland, coastline, and coast redwood. Nominal compound constructions
involving the unpowered movement sense tend to use coaster instead, as in coaster wagon, coaster brake, and

roller coaster.



The proposed model repiesents all structures uniformly using standard unification
grammar typed featuré-structitres,e’ which can also be thought of as frames, constraints, or
templates. Figure 1 shows examples corresponding to the first two ofithc above knowledge
types in (a) and (b).* The structured format and co-indexing mechanism (the superscripts)
permit complex relational constraints to be represented (Shieber 1986). The uniformity, as we
see below, facilitates constructing a consistent underlying probabilistic event spacé. Feature-
structure syntax implicitly defines a partially-ordered hierarchical space (Shieber 1986). To
eliminate redundancy the feature-structures are actually stored using MURAL, a terminological

inheritance hierarchy in the style of KL-ONE.
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Figure 1. Feature-structures for (a) relational constraint 1 above, (b) relational constraint 2 above,
(c) an input form, and (d)a full output structure (floor brackéts indicate a complete event, defined

below).

Since hard constraints are often too rigid, researchers have sought to modify such
frameworks with quantitative certainty or preference measures that yield “soft” relational

constraints. From a purely qualitative point of view, it is as easy to obtain interacting relational

3With a couple of extensions that are non-essential for present purposes (Wu 1992a).
4LM and TR stand for landmark and trajector, and denote image-schematic ground and ﬁgure roles (Talmy
1983, 1985 Lakoff 1987; Langacker 1987; Feldman et al. 1990).



constraints as simple feature constraints, for example by extending marker passing methods with '
weights. As mentioned above, however, the numbers in such models are not well grounded.
The relational constraint problem appears in different guises. In neural networks it
is related to the variable binding problem. Broadly speaking, there are four approaches to the
_ variable binding problem. One is to construct networks on the fly, instantiating and linking
fragments as needed to accomodate new bound constants (e.g., Wermter 1989). This approach
is related to weighted marker passing (Wu 1989), and again the problem is to give a statistical
justification to the numbers. Since the representation in an instantiation scheme is necessar-
ily structured rather than distributed, it is non-trivial to apply known methods for léaming
weights such as backpropagation. The other three approaches are statistically grounded, but
have not been shown to learn generalizations over compositional structures very well. One
strategy, as exemplified by puKLONE (Derthick 1990) or Hinton’s (1981) and Touretzky’s
(1990) triples, is to store explicit binding or relational information into the network. Another
approach is to expand the size of the network to allow all possible binding permutations, as with
non-saturated tensor product representations (Smolensky 1990). Finally, methods employing
Hinton’s (1990) notion of reduced descriptions recursively compress structures into fixed-width
vector representations. These include Pollack’s (1990) RAAM and Plate’s (1991) Holographic
Reduced Representations. It is not clear that any of these schemes capfure structural gener-
alizations, though some preliminary empirical investigations indicate that certain variants of |
RAAM do capture at least treelike regularities (Stolcke & Wu 1992). Simply storing composi-
* tional structures is not enough; the representation must allow processing generalizations over

compositionally similar structures.

A metarepresentational interpretation of probabilities Probabilistic models are only sta-
tistical models if given an interpretation based on sampling. One probabilistic method of
rating competing interpretation structures in a semantic network framework is proposed by
Goldman & Charniak (1990a, 1990b; Charniak & Goldman 1988, 1989). The model employs
Bayesian belief networks (Pearl 1988), including hypothesis nodes representing the binding
of one structure to some role of another. The use of probability theory is a promising step
since probabilities are customarily estimated by statistical sampling methods, thus grounding
the numbers by giving them a derivational interpretation. However, Goldman does not sug-

gest such an interpretation, and we cannot assume any sampling method without knowing,



for example, whether probabilities are to represent objective real-world relative frequencies or
subjective belief measures.® Similar comments may also turn out to apply to less explicitly
probabilistic models such as HoBbs et al.’s (1988) weighted abduction model.

Except for lexical items, the structures we are dealing with are intermediate concep-
tual structures; consequently an interpretation based on sampling real-world physical events
is not well-founded.® 1 propose a metalevel interpretation where a probability denotes how
likely it is that some conceptual structure will be useful to the linguistic agent. These values
are associated with feature-structures in the knowledge base using the PROB attribute as in
fi gure 1. Unlike the usual Al interpretation of belief nets or probabilistic logics, probabilities
are not directly available to the agent and do not represent estimates of real-world frequencies.
This is consistent with Kahneman et al.’s (1982) finding that humans are not good at reasoning
with probabilities.

The metalevel interpretation of probability is formulated in Wu (1992a) using Rus-
sell & Wefald’s (1991) limited rationality framework; space does not permit proper treatment
here. Informally, parsing and semantic interpretation are viewed as a form of adaptive forward
inference. (Actually I am concerned only with the non-attentional part of interpretation which
I call automatic inference after the psychological distinction between automatic and controlled
processes.) The interesting statistical subprocéss is the compilation mechanism responsible
for observing samples—i.e., input utterances and their eventual interpretations, arrived at by
either supervisory training or functional context—and learning which conceptual structures
most frequently turn out to be useful to infer given contextual cues (adaptation by more quickly
“jumping to conclusions”). This mentalist interpretation reconciles probabilities, philosbphi—
cally at least, with statistical sampling. Later I will discuss more practical possible estimation

approaches.

Conditioning on the input event Parsing and interpretation are formulated in evidential
terms. The input utterance’ constitutes the conditioning event e. Figure 1 shows the input
structure for coast road in (c). The desired output is the conceptual structure with the maximum

conditional probability P(g;|e), a structure such as (d). In the current formulation the output

®See Hacking (1975); Weatherford (1982); Bacchus (1990).
SUnless one supposes physical brain-states can be sampled.

"Plus the context, if any; contextual priming is accomodated but not discussed here.



 structure must include as a subpart the entire input structure, as well as a parse tree for the input
string. _ ‘
For present purposes I will assume that conditioning is performed by a marker-
passing process or some similar hypothesis generator. That is, some coarse heuristic produces
a “first cut” set of hypotheses as to the output structures considered most likely.® Conditioning
is performed as a by-product, because only structures consistent with the input structure are
hypothesized. That is, the hypothesis space is a subset of the conditional space. The task is
then to compute the portion of the probability distribution over this conditional space, and to .

select the hypothesis with maximum probability.

3 Model I: Maximum Entropy

The knowledge base contains probabilities for structures like (a) and (b) in figure 1. These
“structures are not full output structures but rather fragments that might be unified into a full
output structure. Each such structure thus determines an abstract class of all the full output
structures in which it is included.

We atomize the probability space as follows. Each possible full output structure ¢;
corresponds to one of the set of exhaustive and disjoint events, and their probabilities P; must
sum to unity. These are called complete events. Any set of hypotheses is therefore a set of
complete events {¢;}. The probabilities of structures like (a) and (b) are marginal constraints

~ specifying the sum probability over classes of ¢;’s. These structures are abstract events.® What
is stored, thus, is in fact only partial information about the distribution over the hypothesis
space, because the marginals alone do not in general determine a unique distribution.

The maximum entropy principle (Jaynes 1979) is a canonical method that yields

a unique completion of a partially constrained distribution. According to the principle, the

8Abstrz:lctly, the hypothesis generator should produce all possible interpretations of the input along with
all known constraints on the probability distribution over them. In fact, to do this for an interestingly large
knowledge base would far exceed resource bounds. Instead hypothesis generation is assumed to produce only the
most pertinent structures.

®In probabilistic terminology, complete and abstract events are simple and compound events. I avoid the terms
here because simple events correspond to more complex feature-structures and compound events correspond to

simpler structures.
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distribution should be chosen to maximize the information-theoretic entropy measure

C
H=-Y PlogP,

i=1
This supplies the missing parts of the distribution in a least-informative manner. To solve the
maximization problem Cheeseman’s (1987) method can be genera]ized to the feature-structure
space rather than the flat feature-vector space, as shown in Wu (1992&). Applying Lagrange
multipliers yields a system of constraints with the same number of unknowns and constraints,
which can then be solved by a successive line minimization procedure.

This constitutes the core theory. More powerful generalizations can be expressed in
the formulation than in flat feature space models. Those models can express conditional inde-
pendence between features, but only allow generalizations (marginal probabﬂities) over classes
delineated by features. Featural independence reduces to the maximum-entropy principle as
a special case; however, maximum entropy also allows generalization over compositionally
similar classes. To the best of our knowledge, the application of general maximum entropy to
a hierarchical compositional event space is new.

Several advantages result over a number of the statistical approaches mentioned ear-
lier, including belief nets, xKLONE, and triples. The compositionally-structured, event space
eliminates explicit features (or hypothesis nodes) for variable bindings. Instead, the similar-
ity between feature-structures with similar binding patterns is expressed in the subsumption
lattice. In representations that employ explicit binding features, estimation of conditional
probability matrices for is susceptible to inconsistencies because binding hypotheses interact
combinatorically: each binding invalidates some subset of the other possible bindings. By
leaving binding hypotheses implicit, the proposed model’s representation can store marginal
rather than conditional probabilities, which are relati'v‘ely 'easy to keep consistent even with
relational constraints. - Similarly, binding hypotheses cause 'loops in belief nets that lead to
highly interconnected constraints, making evaluation particularly expensive since there are no
conditional independences to exploit. ' ' |

The problem also manifests itself in the maximum entropy model because the full
space of ¢;’s is combinatoric, making full-fledged maximum entropy over the entire space
infeasible. However, as discussed in the next section, it is poss{ble to make structural approx-

imations.
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4 Model II: Approximate Maximum Entropy

We would like to cut the space down by considering only part of the conditional space, i.e., the
hypotheses and marginal constraints deemed pertinent by the heuristic hypothesis generator or
marker passer. However, maximum entropy cannot simply be applied to the conditional space
because the marginal constraints are defined over the entire space; indeed the marginals usually
~ turn out to be internally inconsistent if one tries to interpret them over just the conditional
- space.- (For instance, in the later example of figure 7 there is no consistent assignment of
probabilities meeting the marginal constraints, without the “dummy” events to be proposed.)
Thus an approximation method is needed that can be used over the conditional space.
- To estimate the true maximum-entropy distribution for the full combinatoric space,
I propose to use the same maximum-entropy mechanisms in a coarser space. We are only
interested in ranking hypotheses within the conditional space. The essence of the approximation
is to discard the details of how the event space is structured outside the immediate hypothesis
space—what [ will call the complement space. The complement space is entirely covered by a
small number of “dummy” events that correspond to abstract events but are treated as if they
were complete events. There are thus few enough events to be tractable. At the same time the
dummy events make the marginals consistent, by providing nonzero subspaces for those events
that have been counted into the marginals but are inconsistent with the hypothesis space.
Figure 2(a) shows the simplest approach one might take. Each node’s label cor-
responds to the ABBRV of some abstract or complete feature-structure, and the arcs denote
subsumption. A minimum of dummy events are used. One dummy event is needed for each
marginal constraint considered pertinent, i.e., produced by the hypothesis generator (coastal
road and road). Each dummy event represents all the complete events (full output structures)
that are consistent with the corresponding constraint, but not with the conditional space. A
single unshown rnull event represents all remaining events bringing the total probability to unity.
| Entropy can be maximized consistently over such.a space giving the first row of probabilities
at the bottom,; the conditional distribution is obtained by normalizing over the hypothesis space
as shown in parentheses. However, these numbers are unreasonable because of the crudeness
of the structural approximation. - }
The approximate maximum entropy method (henceforth AME) prescribes two prin-

ciples for constructing the hypothesis space to maintain approximation accuracy, described .
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Subsumption 7 !
: Dumi t
—=-———- [nclusign L my even
Abstract events de-7
and M:rginals coast and le4
(Constraints): coastal road road

(@)
C“("ElPlefmi‘;:'s‘;‘_‘ road in road léading road along Highway 1
M3 - J coastal area 1o coastal area coastline
AME Probabilities: 3.9994e-7  1.9999e-11  5.0000e-5 1.9999e-11 1.9999¢-11 5.0000¢-5
Conditionals: (3.9998¢-7) (1.0000) . (3.9998¢-7) (3.9998e-7)
le—4
road
Abstract events
and Marginals
(Constraints): coastal road
(b) .
(‘O(Tlr;l;:.h :;:rs“)s Ij road in road leading road along Highway 1
coastal area 1o coastal area coastline
AME Probabilities: 1.0000e=7  1.0000e-7 4.9800e-3 1.0000e~7 1.0000e-7  4.9800e-5
Conditonals: (0.001996) (0.99401) (0.001996) (0.001996)
le-4
road
S5e-7 2
Abstract events
and Marginals
(Constraints):
©
Complete events ;
" road leading road along
(HPypomcses). coastal area to coastal area coastline
AME Probabilities: 1.0000e-7  1.0000e-7 5.0000e-8 1.0000e-7 1.0000e-7  5.0000e-8 9.9500e-5
Conditionals: (0.28571) (0.14286) (0.28571) (0.28571)

Figure 2. Approximate maximum entropy (AME), (a) with dummy events, (b) with proper subsump-

tion, (c) with specific constraint.

below. How closely full maximum entropy can be approximated depends on the categories
whose marginals are constrained. Discrepancies in the approximation arise from the fact that
the dummy events are treated as being disjoint even though they stand for event spaces that may
overlap. In results to date the discrepancies have proved insignificant but larger experiments
will be useful. | |

The proper subsumption principle dictates that when one marginal constraint is
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superordinate to another in the original space, the dummy event for the subordinate in the
approximate space should also be included in the superordinate. As shown in figure 2(b), this
“results in a correction of several orders of magnitude in the conditional probabilities.

The most-specific constraint principle enforces that the most specific applicable
marginal constraints available from the database always be included. Figure 2(c) shows another
large correction from including a more specific marginal that constrains the total amount of
probability assignable to the hypotheses, causing much of the probability weight to be shifted
to the dummy events and switching the preferred hypotheses. Another example is shown in
figure 3, where including the additional marginal on coasting accomplishment corrects the
wrong preference for coasting road.'° The numbers here are still incorrect as not all the
pertinent constraints have been included yet. In particular, no lexicosyntactic constructions
representing conventional linguistic usage contraints are present (without these we are simply

predicting that coasting accomplishment is the more often-used concept.)

. Si i le-4
ubsux.'npuon D Dummy event road
Inclusion Se-7 /
ast and road Z
7 A\/ Se-1
Abstract events coasting
and Marginals accomplishment
(Constraints): A
Complete events ] i road leading road along Highway 1 co'lnmxl
(Hypotheses): L coastalarea 1o coastal area coastline i _—I road
(a) AME Probabilities: 1.0000e-7  1.0000e-7 5.0000e-8 1.0000e-7 1.0000e-7  5.0000e-8 9.9500e-S 4.9995e~7
Conditionals: (2.0002e-7) (1.0001e-7) (2.0002¢-7) (2.0002e-7) (1.0000)
(b) AME Probabilities: 1.0000e~7  1.0000e-7 5.0000e-8 1.0000e-7 1.0000e~7  5.0000e-8 9.9500e-5 2.5000e-7 2.5000e-7
Conditionals: (0.16667) (0.083333) (0.16667) (0.16667) (0.41667)

Figure 3. Results with an added hypothesis (a) without and (b) with specific constraint on coasting

accomplishment.

Specifics of the AME method are shown in figure 4. Formally, a second ventropy-
maximization problem is derived where the only detailed structure lies within the hypothesis
space. Marginals from the original domain are used as estimators for marginals in the approx-
imate spacé. As in Model I this yields a system of constraints as derived in figure 5. The

numerical method used to solve the system is shown in figure 6.

19An accomplishment is a subkind of action that takes its name from Bach’s (1986) work on aspect.
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Suppose Q is the set of complete (token) f-structures and G is the set of abstract (type)
f-structures, and F & GU Q. Let H = {h1,... ,hiy... ,hg} C Q be the candidate output
structures produced by the hypothcsis generator, and let M = {m,,... ,m;,... ,mM}.' C
G be the pertinent abstract classes with associated marginal probabilities P,, = P(m;)
from the constraint genefator; Denote by C the partial ordering induced on H U M by the
subsumption lattice on f-structure space. | .

We define D = {d;.... ,d;,...,dp} as the set of dummy events. Let FYHuU MvU D
be the approximate event space, and let HEHUDbe the approximate hypothesis space.

Define the approximate ordering relation C over F as follows:

aC babe F
aC b, if a=my;;b=d;

aCc;e=myj;b=d;

aZ b, otherwise

Let P, , be the marginal probability constraints on 7 and use P as estimators for ij.

Assign 15;;'. and Pd‘. such that

Y. B =1

geH
while maximizing the entropy

subject to the marginal constraints

q:9€H,m;Cq

Figure 4. The AME (approximate maximum eh[rbpy) method.

We now considera full case of how AME integratés constfainfs, using the intfoductory
example. Suppose the set of constraints and hypotheses deemed pertinent are as shown in
figure 7. We ignore the numbered boldface maxgihalé for the basic case. The reader may

verify that constraints '(1)—(4) are @alitatively encoded by comparing the relative values of

15



Define a new energy function J to be minimized:

M . ~ - ; 2
J‘gE+Z’\j(Pm;— Z ‘Pq)z—Zquoqu—i-Z/\j(Pm,— Z £y)
1=1

i=1 g:q€H,m,Cy g€ g:9€H,m;Cq
Observe that setting the gradients to zero gives the desired conditions:

Vi =0 = j—\J =0;1 <j <M = expresses all marginal constraints
VeJ =0 = —3%%- =0;q € H = maximizes entropy
q
Since the partials with respect to P are

a—;] = —logf?q - Z )\j
oF, jm;Cq

thenat VaJ =0,
logPy=— > )
jm;iCq

; def -
Defining w; = e™"7,

P, = H wj
7m;Cg

the original marginal constraints become

PmJ = Z H Wk
q:m; Cq kimiCgq
which can be rewritten
B~ Y TI wr=0

q:mj[:q kmilq

to be solved using a numerical method.

Figure 5. Derivation of constraint system for AME.

the marginals. For instance, to encode (2), the marginal on C:NN:containment—a noun-noun
- construction used to signify containment—is twice that of C:NN:linear order locative. For the
basic case AME yields the conditional distribution in the uppermost row labelled “0:”.  The

hypotheses road in coastal area and road along coastline are the winners with the highest
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1. Start with a constraint system X « {} and an estimated w vector () of length zero.

2. For each constraint equation,

(a) Add the equation to X and its corresponding w; term t0 (w1, ... ,W;—1,w;).

(b) Repeat until (w1, ... ,w;) settles, i.e., the change between iterations falls below

some threshold:

1. For each equation in X constraining Py, solve for the corresponding w;

assuming all other w values have their current estimated values.

Figure 6. Numerical algorithm for solving the maximum-entropy constraint system.

le-1 le-6 le—4 Se=7
ischema state seacoast road ' coasting

acomplishment

Se~4 le-3 le-2

C:NN: linear order confainment coast and road
ischema state logative
2:le-4 : 2:1e-§ I };9_38 4
Se-3 le—4
C:NN:linear C:NN:containment C:coast:
‘order locative _— coasting
ymplishment
road leading road In road along Highway 1 Highway 1 in Highway 1 coasting
to coastal area  coastal area  coastline : Pacific coastal - - along Pacific road
area coastline
0: 0.046524 037215 037215 0.00025822 0.074419 0.074419 0.060089
1: 0.015757 0.12605 0.12605 0.00061625 0.02521 0.02521 0.6811
2: 038339 0.15336 0.15336 0.0010636 0.030672 0.030672 0.24748
3: 0.40849 0.20422 0.20422 0.00056666  0.025527 0.025527- 0.13145
4: 0.010205 0.081579 0.081579 0.00028371  0.40657 0.40657 0.01321

Figure 7. Base run for coast road plus four variations. The redundant inclusion arcs and dummy events

are omitted and only conditional probabilities are-shown.

probabilities, as may reasonably be expected.

Four additional runs are shown to demonstrate the effect of each constraint that
is integrated into the conditional distribution. For each of constraints (1)-(4), the relevant
abstract events are marked with an alternate marginal probability in boldface and labelled by
the number of the constraint. Suppose constraint (1) weren't true, and “coast” were actually

used more often to mean unpowered movement than a seacoast. Then switching the marginals
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on “coast” signifying seacoastand coasting accomplishment as shown produces the conditional
distribution in row 1, where coasting road now dominates the hypotheses. The reader may
similarly verify the effect of each of the other constraints. The examples were computed using

a C implementation of AME with a symbolic user interface.

S Discussion

As mentioned, “improper” but practical probability estimation methods may suffice for interim
applications. Lexical frequency counts over the Brown corpus and others are available (Francis
& Kucera 1982) and parsed corpora will soon facilitate frequency counts for syntactic patterns
as well. These counts may be taken as rough estimates of the frequency of an agent’s use of the
lexicosyntactic structures. The analogous procedure is not practical for semantic or conceptual
structures, since fully interpreted corpora are not available. Warren’s (1978) study contains
frequency counts on manually-analyzed coarse semantic relation categories, but these must be
massaged to fit more sophisticated Al ontologies. . |

Another potential use of large-corpora techniques has‘ been suggested by Hearst
(1991), who proposes an automated method for “coarse” disambiguation of noun homographs.
Such a method, based on orthographic, lexical, and syntactic cues near the noun, may improve
the relevance and accuracy rate of hypotheses.

Performance will depend heavily on which abstract events the investigator chooses
to constrain the marginals for. In effect, the investigator decides the degree of generalization,
because what maximum entropy does is to generalize the partial distributional information in the
knowledge base to the rest of the event space. Choosing the abstract events is a kind of concept
formation, which this work does not address, but toward this direction Wu (1991) proposes a
theoretical distribution for modelling generalization from samples, related to discrete kernel
estimation techniques. Choosing a set of marginal constraints can then be seen as a fnatte_:r of
best fit to the theoretical distribution. -

The proposed model provides a probabilistic basis for integrating relational con-
straints in parsing and semantic interpretation, using standard structural representations. Unlike
most previous quantitative approaches, the probabilistic measures have a statistically grounded
interpretation, thereby making it more plausible that the model can scale up to interestingly

large domains. Moreover, the AME method addresses tractability and consistency issues that
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have been problematic for probabilistic models with relational constraints.
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