Logic Grammar Tools 1

LOGIC GRAMMAR TOOLS
FOR
COMPUTATIONAL LINGUISTICS

Harvey Abramson
Institute of Industrial Science, University of Tokyo
Minato-ku, Roppongi 7-22-1
‘ Tokyo 106, Japan -
e-mail harvey@ godzilla.iis.u-tokyo.ac.jp

Abstract. To many people, logic grammars are equivalent to the Definite Clause
Grammars (DCGs) of Warren and Pereira. Although sophisticated applications can be
built with DCGs, the notation is too close to Prolog and too far from linguistic notation.
Furthermore, DCGs rely entirely on a very simple control stategy for execution. In this
paper we describe some advances in notation and control which make logic grammars
more declarative and which bring logic grammars closer to current linguistic concerns. In
particular, we shall describe the addition of feature sets and constraints on feature values,
delaying mechanisms to implement such constraints declaratively, metaprogramming for
logic grammars, and the application of metagrammatical programming to ID/LP parsing.

The logic grammar background. Derivations in logic programs are, in a sense, a
generalization of context free derivations. Consider a conjunction of goals in a logic
program:

:- G1,G2,...,Gj,...,Gp
-The next derivation step yields the following conjunction of goals
- (G1,G2,...,Gi-1,B1,...,Bm,Gi+1,....Gn)o
provided that there exists a clause in the program
G :- By,....Bp

such that G unifies with Gj under the unifying substitution 0. In case there is a fact or
unit clause G which unifies with Gj, the next derivation step becomes:

- (G1,G2,...,Gi-1,Gi+1,...,Gn)O

The derivation may terminate with the empty clause (empty conjunction of goals),
signifying success, and then the unifying substitutions provide values for any variables
occurring in the initial goal clause; or, it may terminate with a non-empty conjunction of
goals, indicating failure of the original goal. Unfortunately, the derivation process need
not terminate.

Logic Grammar Tools 2

Now consider derivations using a context free grammar. Given a sentential form
containing at least one nonterminal symbol A

al...ajAaj+1...am
the next step in the derivation is
al...ajb1...bmaj+1...am
provided that there exists a context free production
A -->b1..bm

in the grammar. The derivation process terminates when a sentential form contains only
terminal symbols.

A context free grammar can be easily represented as a logic program and context free
derivations can then be subsumed by the process of evaluation of a logic program goal. A
grammar rule such as

A -->b1..bm
is represented by the logic program clause
a(X0,Xm) :- b1(X0,X1),...bm(Xm-1,Xm)

If bj is a nonterminal there is a logic program clause for each grammar rule with bj in the
left hand side. If bj is a terminal symbol tj then

bi(Xi-1,Xj) = connect(tj,Xj-1.Xj)
where the unit clause connect is defined by
connect(x,[x1X],X).

The arguments X()...Xm represent the source language string considered as a "difference
list". Thus, the logic program clause above is read as "There exists an a between X() and
Xm provided that there is a b1 between X() and X1, ..., and a by between Xy-1 and
Xm- The connect predicate succeeds when the first component of a difference list
matches the sought for terminal symbol x. If sentence is the start symbol of the context
free grammar, then the following goal will analyse or generate a sentence X of the
language '
:-sentence(X,[])

Definite Clause Grammars (DCGs - see [16]) generalize the above mapping by allowing
each predicate bj to have further arguments in addition to Xj-1 and Xj. These extra
argument places can be used to enforce various linguistic constraints, build a derivation
tree structure, or compute semantic representations. Here is a Definite Clause Grammar

Logic Grammar Tools 3

which appears in [5] which makes use of an extra argument to specify when a direct
object may be elided, and which also prevents a direct object from being elided when it
should not be. The value of the argument is 'not_elided' when the object should not be
elided, and ‘elided’ when it is. Terminal symbols are written enclosed within square
brackets, such as [the]. In the right hand side, [] represents the empty string.

(0) sentence --> sent(not_elided).

(1) sent(E) --> noun_phrase,verb_phrase(E).

(2) noun_phrase --> determiner,noun,relative.
(3) noun_phrase --> proper_name.

(4) verb_phrase(not_elided) --> verb.
(5) verb_phrase(E) --> transitive_verb, direct_object(E).

(6) relative -->[].
(6" relative --> relative_pronoun,sent(E).

(7) direct_object(not_elided) --> noun_phrase.
(7)) direct_object(elided) --> [].

(8) determiner --> [the].

(9) noun --> [man].

(10) proper_name --> [john].
(11) verb --> [laughed].

(12) trans_verb --> [saw].
(13) relative_pronoun --> [that].

For this grammar, the following query will succeed.

:- sentence([the,man,that,john,saw,laughed], []).

Furthermore, by enclosing any conjunction of logic programming goals within a pair of
braces in the right hand side of a DCG rule, other constraints, not expressible as ordinary
grammar rules, may be specified.

a(XOaXm) - bl(XO’Xl)’-'-a{GoalS},--',bm(Xm-1,Xm)

The mapping from DCG rules to logic programming predicates is a simple mechanical
process (essentially adding the arguments which hold the representation of the source
string to nonterminal symbols and generating calls to connect for terminal symbols) so
that the DCG user simply writes DCG rules which automatically get translated into logic
program clauses. The usual Prolog implementation of DCGs relies on Prolog's left to
right, depth first control strategy to evaluate such goals as sentence(X,[]), and therefore
the parsing method is essentially recursive descent, and very often generation cannot be
done as easily as analysis.

Logic Grammar Tools 4

done as easily as analysis.

Since the introduction of DCGs, several other logic grammar formalisms have been
introduced which attempt to generalize DCGs by dealing automatically with one linguistic
problem or another. Usually, the generalization is handled by mapping grammar rules
into logic program clauses with several automatically added arguments in addition to
those which hold the input/output string as a difference list. A case in point is Pereira's
Extraposition Grammars (XGs see [17]) in which the logic program clauses contained a
total of four automatically generated arguments: two for the difference list, and two to
manipulate a list of possibly left-extraposed elements. We will not go into detail here
about this formalism, but the reader may consult [5] for a discussion of XGs and other
such formalisms.

Although the basic idea introduced by DCGs is one which permits the development of
serious computational linguistic applications, the process of doing so by using arguments
attached to nonterminals introduces problems of software engineering and what might be
called programming style. In any complex application, large numbers of extra arguments
may be needed, and then the difficulties of keeping track of which argument represents
which linguistic problem become an enormous obstacle to the maintenance and
development of the system. Further, there has been a tendency in the field of logic
grammars to introduce a new formalism whenever some linguistic problem could be
hidden away in arguments automatically attached to logic program clauses. In the rest of
this paper we shall discuss how these problems of developing logic grammar applications
may be simplified. The former problem can be dealt with by making use of a system of
feature sets and an extended notion of unification derived from unification grammars.
This idea is not new, of course, (it dates back to early attempts to implement, for
example, Lexical Functional Grammars), but it is one which can easily be adapted to the
logic grammar framework. The second problem can be dealt with by adapting the logic
programming notion of metaprogramming to extend a basic logic grammar formalism. In
the rest of the paper we shall discuss these changes. In particular, the feature system
which we will introduce will also make use of some advanced logic programming control
techniques to gain an added measure of declarativity.

Feature Sets and Extended Unification. Over the last few years the so-called
unification grammars have become popular among linguists and computational linguists.
One aspect of these grammars is the representation of grammatical information, syntactic,
semantic, pragmatic, etc. in terms of sets of features. A feature set is essentially a
collection of name-value pairs in which the value itself may be a feature set or a variable
or an atom (a name, essentially).

For example:

{ category = noun,
lexical = cat,
type = {animate = yes,
human =no}

}

represents some of the information associated with the word "cat". Further information
may be contained in another feature structure:

Logic Grammar Tools 5

{ lexical = cat,
category = N,
type =X,
number = singular,
species = 'Siamese’

}

The information contained in these structures may be combined by a general notion of
unification to yield:

{ category = noun,
lexical = cat,
type = {animate = yes,
human = no},
number = singular,
species = 'Siamese’

}

If a name appears at the same level of both feature sets, then that name appears in the
result providing that the values associated with that name unify (in the general sense); the
value associated with the name in the result is the unification of the associated values of
the original feature sets. Otherwise, any name-value pair in one set appears in the result.
In the above example, the variable N is unified with noun, and X with the feature set
associated with type in the second feature set. Note that order of name-value pairs is not
important.

There are at least two ways of implementing feature sets in logic programming. One
method involves a global analysis for all names used in an entire grammar and assigning
a positional argument to this name, these positional arguments being attached (in the
manner of DCGs) to all nonterminals used in the grammar, thus directly mapping the
extended unification into Prolog's unification (the details being hidden from the user).
Another method makes use of a logic programming data structure in which lists are
represented using what is called a tail variable: instead of a list ending with the atom [], it
ends in a variable. This allows the variable to be instantiated later, thus making the list
longer. During extended unification, this technique permits the addition to a feature set of
name-value pairs which do not originally appear in it. This technique was first reported in
a paper describing the implementation in Prolog of a Lexical Functional Grammar System
[10].

Definite Feature Grammars: Generalized Feature Values and Constraints.
In Definite Feature Grammars, introduced in [4], feature value sets may be attached to
nonterminals to express lexical, syntactic, semantic or pragmatic knowledge about
nonterminals. Generalized unification permits the combination of such knowledge from
various nonterminals during parsing or generation. One original aspect of DFGs is that
feature values are generalized so that they may be any logic programming (or Prolog)
term; furthermore, in specifying feature values, it is possible to write constraints on the
values as a conjunction of goals to be solved. Since such constraints on features look as
if a definite clause is being defined, the formalism is called Definite Feature Grammars.

DFG rules may, like earlier logic grammar formalisms, be compiled by simple methods
into logic programming clauses. We chose to compile to NU Prolog, a sophisticated
implementation of logic programming which contains a very powerful and general
mechanism for delaying goals in case certain information is not yet available. The

Logic Grammar Tools 6

mechanism consists of writing "when" declarations which prevent a goal from executing
until some Boolean combination of variables in the head of a clause is sufficiently
grounded. We are thus able to initiate the solution of these DFG constraint goals at
unification time, and to automatically suspend them until enough information becomes
available, and thus get something which may be considered a Constraint Logic Grammar
formalism. An advantage to such an approach is that the constraints may be written in a
more declarative style, with less attention to control and order as required when using
DCGs and other earlier logic grammar formalisms. (Since NU Prolog is in many ways
the closest practical approach to the ultimate goal of Programming in Logic, there are
other advantages to basing a logic grammar formalism on it, including safe negation,
extended logical expressions, etc. See [14],[15]

We describe the syntax and semantics of Definite Feature Grammars by way of the
classic example which [12] used to introduce the notion of attribute or property grammars
to the world. The following formal grammar with start symbol "number" defines a
language of bit strings, such as "101.01" and associates with number a value
representing the bit string as a decimal number. The value is specified by associating with
each bit in the string the value that bit has when the bitstring is considered as the binary
positional notation for a number. That number is specified in terms of the power of two
associated with that particular place in the string, and that particular place for the integer
portion of the value depends on the length of the bitstring to the right of the relevant bit.
This is specified using a DFG as follows: ‘

bit::{ value=0} --> "0".

bit:: {scale=S,
(value= V :- power(S,V))
} -->
" 1 ll.

bitstring:: {length=0,value=0} --> [].

bitstring::{ (scale=Scale :- S1 is Scale - 1),
(Iength=Length :- Length is 1 + L1),
(value=Value :- Value is VB + V1)
}-->

bit::{ value=VB,scale=Scale},
bitstring:: {length=L1,value=V1,scale=S1}.

number::{ (value =V :- Vis VB + VF)} -->
bitstring:: {length=Length,value=VB, (scale=S :- S is Length - 1)},
fraction::{ value=VF}.

fraction::{value=V} -->
".", bitstring::{value=V, (scale = S :- Sis -1)}.

fraction::{value=0} --> [].

power(B,C) :- Cis 2 ** B,

" The nonterminals are bit, bitstring, fraction and number; the terminal symbols are "0",
"1" and ".". A feature set {...} is associated with a nonterminal by the operator "::".
Associated with the nonterminals number, fraction, bitstring and bit is a feature set with
feature name "value"; also associated with the nonterminal bitstring are feature names
"length" and "scale", and with the nonterminal "bit" is associated the feature name

"scale". Some of the specifications of features are written:\

Logic Grammar Tools 7

name = Value :- Goals

This is understood to mean that the eventual value of "name" is "Value" provided that the
Goals are satisfied, instantiating possibly, variables in Value. (We call our formalism
Definite Feature Grammars because the format of the constrained feature specification
looks like a definite clause specifying the "relation” name = Value.) In the example, the
goals include various arithmetic constraints used to determine the value of bits, bitstrings,
fractions and numbers. Note that we declare the relations between these quantities but do
not specify anything about what order these quantities are computed in. Because we are
implementing this in NU Prolog where arithmetic is delayed until two arguments of an
arithmetic operator are grounded, we need not concern ourselves about ordering the
computation. This may be compared with a similar example used to introduce the
author's earlier Definite Clause Translation Grammars [1] in which because of the Prolog
in which it was implemented, one had to be careful to make sure that lengths were known
before computing scales in the integer portion of the number. One could, when using an
"ordinary" Prolog get around this by creating a structure which is evaluated at the end of
parsing: in this example, a large arithmetic expression would be created and then
evaluated. The drawback to doing so however, is. that if the value is being used to
constrain parsing, one has to complete a parse even though it may be subsequently
filtered out by a constraint. (It would be possible to make use of the delaying mechanism
even in a NU Prolog implementation of DCGs, but a grammar formalism with feature
structures is more perspicuous.)

As a result of parsing the string "10", we obtain the following annotated derivation tree:

0: number(4) {yield="10",
value=2.0}

1: bitstring(3) {length=2,
value=2.0,
scale=1,
yield="10"}

2: bit(1) {value=2.0,
scale=1,
yield="1"}

3. "1

2: bitstring(3) {length=1,
value=0,
scale=0,
yield="0"}

3: bit(0) {value=0,

scale=0,
yield="0"}
4. "0"

3: bitstring(2) {length=0,
value=0,
scale=-1,
yield=[])

4:1]
1: fraction(6) {value=0,
yield=[]}
2:1]

Logic Grammar Tools 8

Numbers in brackets attached to nonterminals, such as number(4) give the compiled rule
number. Feature sets follow the nonterminal to which they are attached. This tree
structure with attached feature sets containing attribute-value pairs, exactly mirrors the
original model of Knuth's attribute grammar derivation tree except in that the values are
computed by logic programming rather than with a functional notation. Note the feature
name "yield" whose value is the terminal string generated by the nonterminal. See the
section on Metagrammatical programming and DFGs for an explanation of this
feature. -

Implementation of Definite Feature Grammars. We outline the translation of a
DFG rule into Prolog (assuming NU Prolog). First of all, each nonterminal will be
translated into a three place predicate, for example:

number(Tree,Input,Output)

where the first argument is a derivation tree, and the following two arguments the two
components of the difference list representing the string being analysed or generated.

The derivation tree is represented by a three argument function symbol:

node(Label, Features, Subtrees)

The Label is the name of the nonterminal with an attached index giving the number of the
rule (used for debugging purposes). On the left hand side, the value of Features is a
logical variable which will be unified with any specified feature set - in a call, the logical
variable may already be instantiated to a feature set from the calling nonterminal; in the
right hand side the value of Features is the feature set compiled to a list with a tail variable
as in [10]. The value of Subtrees is a list of the subtrees of this node, one for each
element, including terminals in the right hand side of the grammar rule.

Consider the rule for number from the bitstring example:

number::{ (value=V :-Vis VB + VF)} -->
bitstring:: {length=Length,value=VB, (scale=S :- S is Length - 1)},
fraction::{value=VF}. '

Here is the Prolog clause corresponding to the rule for number:

number(node(number(4),
Feétures,
[node(B,
[length = Length, value = VB, scale = SI_],
Subtrees_bitstring),
node(], [value = VFI_], Subtrees_fraction)

D,

Input, Output) :-
difference(Input, Output, String),
unify([string = Stringl_], Features),
Vis VB + VF,
unify(Features, [value = VI_]),

Sis Length - 1,

Logic Grammar Tools 9

bitstring(node(B,
[length = Length, value = VB, scale = SI_],
Subtrees_bitstring), Input, T),

fraction(node(, [value = VFI_], Subtrees_fraction), T, Output).

The predicate difference computes the standard list representation of the difference list
Input - Output. An internally created feature set {yield=String} is unified with Features
(see Metagrammatical programming and DFGs for some applications of this
feature), the computation of V as the sum of VB and VF is initiated and then {value=V}
is unified with Features. Corresponding to the right hand side, the evaluation of S as
Length - 1 is initiated, and then the predicates bitstring and fraction are called in
succession, bitstring recognizing a string between Input and T, and fraction using up the
string from T to Output. This compiled predicate will fail unless, as in NU Prolog, the
arithmetic predicates suspend until at least two arguments are grounded. The predicate
difference is written so that it will suspend until Input and Output are sufficiently
grounded. Note that the user may have to provide information in the form of NU
Prolog's "when declarations"” to insure proper execution of the compiled code: this
information, however, is easy to provide and is the sole contribution that the user has to
make as far as control is concerned.

Metagrammatical programming and DFGs. The notion of a metanonterminal meta
was introduced in [2] in order to provide a simple means of extending the underlying
grammatical formalism and to deal with various linguistic phenomena. Since then, there
have been some implementations of Prolog which have a built in metanonterminal (parse
of Quintus and Sicstus), and some other researchers have developed a number of other
interesting applications of grammatical metaprogramming, including a grammatical
treatment of the analysis of DNA strings. (See [20],[18]). Thus, grammatical
metaprogramming is widely recognized as a useful technique and we provide it in our
implementation of DFGs. Because DFGs make use of feature sets, and because feature
values may be any logic programming term, the applications of metaprogramming turn
out to be rather cleaner and easier than metaprogramming in DCTGs. In this section we
will provide a few examples of grammatical metaprogramming in the DFG formalism.

Here is a definition which extends the formalism by allowing the specification of a
sequence of grammatical symbols:

seq::{ list=1[] } -->[].

seq::{ kind = X, list = [HeadTail] } -->
X::{yield = [Head]},
seq::{ kind=X, list = Tail }.

A sequence of kind X is either empty or it consists of a metaoccurence of an X followed
by a sequence of kind X.eTo represent the metaoccurence of an X with certain feature
values specified, we write X::{yield = [Head]} as above. To represent the metaoccurence
of an X without any specified feature values, it is enough to write X. During the
compilation of DFG rules to logic programming clauses, suitable calls to our system
predicate '$meta’ (see Appendix) are generated for any metaoccurence of a symbol. To
represent the "value" of a sequence, there is a feature called "list" which forms a list of
the individual elements of the sequence. The empty sequence contributes the empty list as
value, and a nonempty sequence combines a Head from the metaoccurence of X and the
Tail from the subsequence. The special feature name "yield" is automatically attached to
all nonterminals: its value is the string derived from that nonterminal.

Logic Grammar Tools 10

all nonterminals: its value is the string derived from that nonterminal.

A general conjunction rule is given by:

conj::{ kind=[Begin,Left,Middle,Right,End],

operator=Op,

(value =V :- combine(Op,V1,V2,V))} -->
Begin, '
Left::{value=V1},

Middle,

Right::{value=V2},

End.

Here a conjunction is specified by the feature names "kind", "operator” and "value". The
value of kind is a quintuplet specifying punctuation symbols "Begin", "Middle" and
"End" which demarcate the conjoined "Left" and "Right" elements. The operator "Op"
specifies how the values of the conjoined elements are to be combined by the goal
combine(Op,V1,V2,V) to specify the value V of the conjunction.

Assuming that a grammar has been defined with start symbol sentence, and with a feature
"value" whose value is the logical form of the sentence, we can define one kind of
conjunction as follows:

conj::{kind= [[either], sentence, [or], sentence, []],
operator=or}

Here, Right is the empty string. Another kind of conjunction is defined by:
conj:: {kind= [[], sentence, [and], sentence, []],
operator=and}

In this case, both the Left and Right punctuation symbols are empty. For a formal
application of the conjunction rule, here is a definition of how two numbers from our
example given above could be written:

Conj::{kind= [n(u, number, ||+n, number, n)n],
operator=sum }

In order for these conjunctions to be correctly analysed, the following rules for
"combine" must be provided:

combine(sum,A,B,C) :- Cis A + B.
combine(or,A,B,or(A,B)).
combine(and,A,B,and(A,B)).

The top level of a derivation tree for the conjoined sentence "Either John loves Mary or
Mary loves a cat" is given by:

10

Logic Grammar Tools 11

0: conj(13) {kind=[[either], sentence, [or], sentence, []],
operator=or,
yield=[either, john, loves, mary, or,
mary, loves, a, cat],
value=or(loves(john, mary),
some _UPZI &(cat(_UPZI),
loves(mary, _UPZI)))}
1: leaf(either) {yield=[either]}
1: sentence(7) {value=loves(john, mary),
yield=[john, loves, mary]}
1: leaf(or) {yield=[or]}
1: sentence(7) {value=some _UPZI &(cat(_UPZI),
loves(mary, _UPZI)),
yield=[mary, loves, a, cat] }
l:empty {yield=[]}

A number of applications given in the papers of Wilmes and Searles involve constraints
on the yield or on a part of the yield. A simple example is the definition of a rule for a
palindrome for some grammatical category X:

palindrome:: {kind=X} -->
X::{yield = S},
X::{yield =R :- reverse(R,S)}.
A string of repeated input is specified by:
repeat :: {kind=X} -->
X::{yield = S},
X::{yield = S}.
Other formal examples given in these papers can be constructed by more complex
constraints on the value of the feature yield. When necessary, new operator definitions
could be given as in Wilmes' or Searles' work for special purpose grammar formalisms,
but the current extensions of '$meta suffice for their implementation.

Both Wilmes and Searles introduce a notion of assignment of the derived string. For
example, Wilmes introduces the notation:

item =: vol

where item represents a metacall of an allowable item (eg, nonterminal, terminal, list,
etc.) and vol is a variable or a list which gets instantiated to the string derived from item.
This may be simply expressed in DFG terminology as:

Item::{yield=Vol}

One interesting relation which can also be defined by means of the metaextensions is the
notion of derivability. In our terms this is:

11

Logic Grammar Tools 12

Item ==>* String :- '$meta'(Item:: {yield=String},Tree,String,[])

As Wilmes notes, an application of the notion of derivability may be used to specify what
it means for a string to be in the intersection of languages (left here as an exercise for the
reader). Perhaps a more interesting application of the notion of derivability, coupled with
our metaextensions, is the possibility of giving a metadefinition of derivability in Dahl's
Static Discontinuous Grammars (see our concluding remarks).

ID/LP parsing. Ordinary context-free rules specify both the constituents of each
syntactic category and the order in which they occur. This is suitable for many situations,
particularly for languages with a fixed word order but is not very suitable for languages
where there is flexibility in word and/or constituent order. Such languages can be more
easily described by "factoring out the immediate dominance and linear precedence
relations, and stating them separately." (See [11]. Such separation of immediate
dominance (ID) and linear precedence (LP) constraints has an extensive history which is
sketched in [7].) For example, the ordinary context-free rules:

a-->bcd
b-->acd
c-->abd
d-->abc

do not capture the generalization that in the specified language sister constituents always
appear on the right hand side in alphabetical order, whereas the following ID/LP rules
(where right hand sides are considered to be unordered) do:

a-->{b,c,d}
b-->{a,c,d}
c-->{a, b, d}
d-->{a, b, c}

LP a<b<c<d Example 1.

ID/LP rules also can be more concise than context-free rules. The following ID/LP rule
with empty LP constraints would require 120 separate context-free rules (one for each
possible permutation of a, b, c, d, e) to specify the same syntactic category s:

s-->{a,b,c,d, e} Example 2.

Given the convenience of ID/LP rules, how does one parse with them? We present a very
simple metarule which extends top-down parsing of logic grammars so that ID/LP rules
may be handled.

Metarules for UCFG parsing. We first give metarules which permit the parsing of
UCEFG rules, i.e., ID/LP rules with no LP component. These simply specify that a
syntactic category is given by some permutation of the constituents in the right hand side
of a rule. Using such rules we can specify free word or constituent order phenomena (but

12

Logic Grammar Tools 13

not free constituent order phenomena where the constituents may be discontinuous). We
use the !/1 symbol to name our metanonterminal.

I --> 1.
([XIXs]) -->
{ select(Z, [XIXs],Ys) }, meta(Z), !(Ys).

select(X, [XIXs], Xs).
select(X, [YIYs], [YIZs]) :-
select(X, Ys, Zs).

The first rule for !/1 is used to recognize an empty permutation as the empty string. The
second rule for !/1 nondeterministically selects Z from the non-empty list /[X/Xs] of
grammatical symbols to be permuted leaving Ys, parses a meta(Z) and then recursively
parses with a permutation of the remaining grammatical symbols Ys. The predicate select
nondeterministically selects X from the second argument yielding the remaining elements
in the third argument.

Here is how Example 2 would be written:

s --> !([a,b,c,d,e]).

provided that we define
a -->[a]. a-->[].
b -->[b]. b-->l.
c -->[c]. c-->1].
d ->[d]. d-->l.
e -->[el. e -->[].

Here with slight cheating is an example of free word order treatment of a somewhat
contrived Latin sentence meaning "Good girl loves small boy":

latin --> !([noun:: {case=acc}, adj::case=acc},
noun:: {case=nom}, adj:: {case=nom}, verb]).
verb --> [amat].
noun(nom) -->[puella]. noun(acc) --> [puerum].
adj(nom) --> [bona]. adj(acc) --> [parvum].

The cheating lies in not being able to treat in this formalism the discontinuous
constituents of the nominative and accusative noun phrases puella... puerum and bona...
parvum.

This method of specifying when constituents may be scrambled can be combined with
order dependent parts of rules. Highly simplifying, in Japanese, the subject, direct object
and indirect objects may be scrambled, but the verb must appear at the end of a sentence.
Also, the subject and objects may be elided. The following are legal Japanese sentences:

taro ga hon wo hanako ni ataeta.
hon wo hanako ni taro ga ataeta.

Taro gave the book to Hanako.

13

Logic Grammar Tools 14

taro ga hanako ni ataeta.
Taro gave (something) to Hanako.

taro ga ataeta.
Taro gave (something to someone).

ataeta.
(Someone) gave (something to someone).

The post positional particles ga, wo and ni mark the subject, direct object and indirect
objects, respectively. The following grammar generates all the above sentences and a
number of others which are not shown.

s --> !([option::{kind=subject}, option:: {kind=0bj1 },
option:: {kind=0bj2}]), [ataeta].

subject --> [taro],[ga].

objl --> [hon],[wo].

obj2 --> [hanako],[ni].

Here option is a metarule which finds an optional occurence of the nonterminal argument
to the feature value kind:

option::{kind=X} --> X.
option::{kind=_} -->[].

This example was motivated by a discussion of scrambling and ellipsis in Sugimura™® .

Metarules for ID/LP parsing. In order to deal with nonempty LP constraints we
have to test whether adding the selected element to the list of grammatical symbols which
have been used so far in an ID/LP rule does not violate the LP constraints. To simplify
the checking of constraints we do some preprocessing. For each symbol x which appears
in a linear constraint we can derive a relation which specifies what is forbidden in a
parse. Thus for the constraint

a<b<c

we get

forbidden(b,a).
forbidden(c,b).

forbidden(c,a).

That is, it is forbidden for a b to occur before an @, or for a ¢ to occur before either a b or
an a. The last definition of forbidden is derived by considering the transitive closure of
what is directly forbidden by the linear constraint.

*R. Sugimura. A Parser for Scrambling and Ellipsis. In particular, the handling of these problems with
respect to the SAX system (see [13]).

14

Logic Grammar Tools 15

Further, we specify that a constituent is constrained if it occurs in a forbidden
relationship, and that two constituents A and B are allowed to occur in that order as long
as it is not forbidden:

constrained(X) :- forbidden(X,_),!.
constrained(X) :- forbidden(_,X).

allowed(A,B) :- not(forbidden(A,B)).

We are then able to define the following rules for parsing with nonempty LP constraints.

!(History,[]) --> [].

!(History,[XIXs]) -->
{ select(Z,[X1Xs],Ys),
check_selection(Z,History),
append(History,[Z],NewHistory) },
meta(Z),
!(NewHistory,Y's).

check_selection(Sel,SoFar) :-
not(constrained(Sel)).

check_selection(Sel,SoFar) :-
constrained(Sel),
check_constraints(SoFar,Sel).

check_constraints([],Sel).

check_constraints([XIXs],Sel) :-
constrained(X),
allowed(X,Sel),
check_constraints(Xs,Sel).

check_constraints([XIXs],Sel) :-
not(constrained(X)),
check_constraints(Xs,Sel).

In the definition of !/2 the first argument is a history of which constituents have already
been parsed and the second argument is a list of the constituents which have yet to be
recognized. The first rule for !/2, used to terminate a parse with an ID/LP rule, specifies
that an empty list of constituents to be recognized generates the empty string. In the
second rule for !/2, Z is nondeterministically selected from the set of constituents yet to
be parsed and check_selection verifies that no constraints are violated. A new history is
constructed by appending the old history and [Z], a metacall is made to parse a Z, and
then !/2 is recursively called with the remaining constituents to be recognized. The
predicate check selection succeeds if the selected element is not constrained, otherwise it
succeeds if it is constrained and check constraints succeeds. The first argument of
check constraints is the history of what has been parsed so far and the second argument
is the selected element. The predicate check_constraints succeeds: if the history is empty;
if the first element X of the history is constrained, allowed(X,Sel) succeeds and the
remaining constraints can be checked; or, if the first element of the history is not
constrained, and the selected element does not violate any constraints in the remaining
elements of the history.

15

Logic Grammar Tools 16

The following grammar generates all permutations of a, b, ¢ and d in which a must
precede b:

s --> !([1,[a,b,c,d]).
a-->[a].

b-->[b].

c-->[c].

d-->[d].

a<hb.

The unit clause forbidden(b,a) is generated from the constraint a < b. The goal
s([1,[a,b,c,d],Tree,X,[]) will successively generate in X each of the allowed
permutations. Tree represents the derivation tree for such a permutation.

Here is an example which may be found in [3].

s --> 1([],[np,vpl).
vp --> !([1,[v,pp:: {yield=with},pp:: {yield=in}]).
np --> [gustave].

np --> [imogen].

np --> [blackpool].

v --> [lives].

pp::{yield=with} --> !([],[[with],np]).
pp::{yield=in} --> !([],[[in],np]).
forbidden(vp,np).

forbidden(pp(With_or_In),v).

forbidden(N,[X]) :- member(N,[s,vp,np,v,pp()]).

The definitions of forbidden are derived from the following constraints:

np < vp

v <pp(in)
v < pp(with)
No nonterminal may occur before a terminal symbol in a rule.

Concluding remarks.In this paper we have presented a number of developments of
logic grammars. The work on ID/LP parsing is taken from [3] in which there are also
comparisions to another ID/LP parsing algorithm due to Shieber (described in [7]) which
generalizes Earley's parsing algorithm. The main drawback to using top down recursive
descent parsing methods is that left recursive grammar rules present a problem. In
adapting recursive descent parsing to deal with ID/LP rules, recursion can also present an
obstacle to processing. Consider the rules:

s -->[].
s --> !([a,s]).
a-->[a].

Under certain orderings of these rules, and certain choices of elements in the right hand
side of the second rule, Prolog would go into an infinite loop. Even if a first parse is
obtained, attempting to show that it is the only parse might result in an infinite loop. The
problem of left recursion, however, does not prevent top down parsing methods from

16

Logic Grammar Tools 17

being useful in many practical situations. In a recent paper [6] the method described here
is refined, and another method which makes use of Dahl's Static Discontinuity
Grammars [8] is described. Using the latter method it is fairly easy to add loop control as
a constraint on parsing. It should also be possible to use pure grammatical
metaprogramming on DFGs for loop control. Another strategy to control left recursion
adopted by [9] in the Constraint Logic Grammar system makes use of the fact that their
grammars do not permit erasure and so any rule application must consume input. Thus,
limits can be set as to the depths of recursion. It should be possible to adapt their method
to a more general class of grammars in which erasure is permitted, but which requires
that any recursive cycle of nonterminals consumes at least one input token.

References.

[1] Abramson, H. (1984) Definite Clause Translation Grammars. Proceedings of the
IEEE Logic Programming Symposium, Atlantic City, pp. 233-240

[2] Abramson, H., Metarules and an approach to conjunction in Definite Clause
Translation Grammars. Proceedings of the Fifth International Conference and
Symposium on Logic Programming. Kowalski, R.A. & Bowen, K.A. (editors), MIT
Press, pp. 233-248, 1988.

[3] Abramson, H. Metarules for Efficient Top-down ID-LP Parsing in Logic
Grammars, Technical Report TR-89-11, University of Bristol, Department of Computer
Science, 1989. Presented at the Workshop on Prolog as an Implementation Language
for Natural Language Processing, Stringnés, Sweden, April, 1989.

[4] Definite Feature Grammars for Natural and Formal Languages, Proceedings Third
International Conference on Natural Language Processing and Logic Programming,
Norrkoping, Sweden, January 23-25,1991, pp. 222-238. Final version to be published
by North-Holland.

[5] Abramson, H., Dahl, V. Logic Grammars. Springer-Verlag, 1989.

[6] Abramson, H. and Dahl, V., On Top-down ID-LP Parsing With Logic Grammars,
submitted for publication.

[7] Barton, G.E., Berwick, R.C. and Ristad, E. Computational Complexity and Natural
Language, MIT Press, 1987.

[8] Dahl, V. Discontinuous Grammars. Computational Intelligence, vol. 5, no. 4, pp.
161-179, 1989a.

[9] Damas, L. and Varile, N. A Guide to Constraint Logic Grammar, MK2A Document
Set, Eurotra - P, 1989.

[10] Eisele, A., Dorre, J. A Lexical Functional Grammar System in Prolog. Proceedings
COLING 90, Bonn.

[11] Gazdar, G., Klein, E., Pullam, G., Sag, I. Generalized Phrase Structure
Grammar. Basil Blackwell, 1985.

[12] Knuth, D.E., Semantics of Context-Free Languages. Mathematical Systems
Theory, vol. 2, no. 2, pp. 569-574, 1968.

[13] Matsumoto, Y., Sugimura, R. A Parsing System Based on Logic Programming.
Proc. International Joint Conference on Artifical Intelligence, 1987.

17

Logic Grammar Tools 18

[14] Naish, L. Negation and Control in Prolog, Springer-Verlag, 1985.

[15] Naish, L. Negation and Quantifiers in NU-Prolog. Proceedings of the Third
International Conference on Logic Programming. MIT Press, 1986.

[16] Pereira, F.C.N., and Warren, D.H.D. (1980) Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a Comparison with Transition
Networks. Artificial Intelligence, vol. 13, pp. 231-278.

[17] Pereira, F.C.N. (1981) Extraposition Grammars. American Journal of
Computational Linguistics, vol. 9, no. 4, pp. 243-255.

[18] Searles, D.B. Investigating the Linguistics of DNA with Definite Clause
Grammars. Proceedings of the North American Conference on Logic Programming,
vol. 1, pp. 189-208, MIT Press, 1989.

[19] Sharp, R. CAT2 -Implementing a Formalism for Multi-Lingual MT. Proceedings of
the 2nd International Conference onn Theoretical & Methodological Issues in Machine
Translation of Natural Languages, Pittsburgh, Pa. 1988

[20] Wilmes, T. A Generalized Approach to Metaprogramming in Logic Grammars. To
appear in New Generation Computing, 1990.

18

Logic Grammar Tools 19

Appendix: Definitions for the predicate 'Smeta’.

'$meta'((A,B),node('?' ,Feature,RMetaTree),Input,Output) :-
makelist((A,B),Metalist),
compile_FD({yield=S } Feature,_),
difference(Input,Output,S),
'‘$metalist'(Metalist,[],MetaTree,Input,Output),
reverse(MetaTree,RMetaTree).

'$meta'([],node(empty,Feature,[[]]),Input,Input) :-
compile_FD({yield=[]},Feature,_).

'‘$meta'([Terminal],node(leaf(Terminal),Feature,[[]]),Input,Output) :-

compile_FD({yield=[Word]},Feature,_),
c(Input,Terminal,Output).

'$meta’((Nonterminal::Feature), Tree,Input,Output) :-
isNonemptyAtom(Nonterminal),
compile_FD(Feature FeatureList,Constraints),
Tree = node(_,FeatureL.ist,),
NewNonterminal =.. [Nonterminal, Tree,Input,Output],
Constraints,
NewNonterminal.

'$meta'(Nonterminal, Tree,Input,Output) :-
isNonemptyAtom(Nonterminal),

'$meta’((Nonterminal::Feature), Tree, Input,Output).

The first clause in the definition of '$meta is an extension which allows something like
the dynamic parsing or generation using a rule whose right hand side is (A,B) and which
is given a nonterminal name "?". So, if a rule such as the following

? --> ntl, nt2, ..., ntk

did not exist in the original grammar, but were derived dynamically, it would be
metacalled as follows:

'$meta’((ntl,nt2,...,ntl))

This is equivlent to one of Wilmes additions to the repertory of metaprogramming
techniques. In the definition of '$meta, (A,B) is turned into a list, the feature representing

19

Logic Grammar Tools 20

the derived string S { yield = S} is compiled by the predicate compile_FD** , and then
'$metalist and reverse are used (see below) to create a tree node with name "?".

The second clause of '$meta’ specifies what happens with a metacall to recognize an
empty string.

The third clause in the definition of '‘$meta deals with a metacall of a terminal symbol,
creating a branch labeled "leaf" and with the terminal string as the value of the feature
name "yield".

The fourth clause in the definition of '$meta handles a metacall of some nonterminal to
which is attached a set of features, possibly containing constraints. The feature is
compiled into FeatureList (a list with a tail variable) and the constraints are gathered into
Constraints. An appropriate tree structure is created, and then it and the necessary
components of the difference list are appended and the metacall is set up. Execution of
the constraints is initiated, followed by the metacall.

The remaining clause in the definition of '$meta handles a nonterminal which does not
have an attached feature set, and reverts to the previous definition of '$meta.

'$metalist'([],MetaTree,MetaTree, X, X).

'$metalist'([AIB],Trees,MetaTree,Input,Output) :-
'$meta'(A,ATree,Input,X),
'$metalist'(B,[ATreelTrees], MetaTree, X ,Output).

In addition to the definition of ‘$meza, we also provide '$metalist which permits the
specification of the metaoccurrence of everything in a given list and a low level definition
of sequence which, in contrast to the metagrammatical definition of sequence, produces a
flat derivation tree which is perhaps more appropriate.

The predicate '$metalist is straightforward. Each item in the list is metacalled and a list of
derivation trees is formed as the result.

sequence(A,node(sequence,RTree,_),Input,Output) :-
'‘$metaseq'(A,[], Tree,Input,Output),
reverse(Tree,RTree).

'$metaseq'(A, Trees,MetaTree,Input,Output) :-
'$meta’'(A,ATree,Input,X),
'$metaseq'(A,[ATreelTrees],MetaTree,X,Output).

'‘$metaseq'(_,MetaTree,MetaTree,X,X).
The predicate sequence calls '$metaseq which if successful returns a flat list of trees but

in reverse order. A call of reverse corrects this order problem. The definition of
'$metaseq is straightforward.

** compile_Feature_Description, originally written by Randy Sharp as part of the CAT2 machine
translation system [19], subsequently altered to incorporate Eisele & Dorre's generalized unification
implementation. The third argument, not needed here, is used in our DFG compiler to gather all the
constraints attached to features.

20

