第ä����å±��碩士è«𡝗��𤾸��𤾸���

�𡁜£«è«𡝗��𠬍�

�ªç��𦒘��㵪��²ç��睲��¬å��羓���

 å¾㛖�å§枏�ï¼������(�ºç�大學è³��å·¥ç��𠉛©¶��)
 ä¸­æ�é¡𣬚𤌍ï¼�èª墧���§£����¥ç��𣂷�å°滚��§ç��㗇��©ç鍂
 �±æ�é¡𣬚𤌍ï¼�Exploiting the Duality between Language Understanding and Generation and Beyond
 ����蹱�ï¼𡁻䒰ç¸訫� �蹱�

��

ä½³ä��𦒘��㵪��²ç��睲��¬å��羓���

 å¾㛖�å§枏�ï¼��擧錇��(æ¸�虾大學�»æ�å·¥ç�å­¸ç�ç©¶æ�)
 ä¸­æ�é¡𣬚𤌍ï¼�å­¸ç�深度�¹å¾µ�𦠜�è¨条©º�㮖»¥å¼·å�辨è�ä»»å�
 �±æ�é¡𣬚𤌍ï¼�Learning Deep Feature and Label Space to Enhance Discriminative Recognition Tasks
 ����蹱�ï¼𡁏�ç¥�� �蹱�

��

碩士è«𡝗��𠬍�

�ªç��𦒘��㵪��²ç��睲��¬å��羓���

å¾㛖�å§枏�ï¼������(中央大學è³��å·¥ç�å­¸ç�ç©¶æ�)
中æ�é¡𣬚𤌍ï¼��ºæ䲰�°è���虾èª硺�èª䂿¢¼æ··å�è³�����翻譯模å�
�±æ�é¡𣬚𤌍ï¼�Hokkien-Mandarin Code-Mixing Dataset and Neural Machine Translation
����蹱�ï¼朞㷍å®㛖¿° �蹱�

ä½³ä��𤾸��㵪��²ç��睲�ä»笔��羓���

1.  å¾㛖�å§枏�ï¼��𤾸���(�½æ�交é�𡁜¤§å­¸é𤓖ä¿¡æ�)

中æ�é¡𣬚𤌍ï¼�å°齿�å¼讛§£çº讛��¶æ䲰循å�å­¸ç�

�±æ�é¡𣬚𤌍ï¼�Contrastive Disentangled Memory for Sequential Learning

����蹱�ï¼�ç°¡ä�å®� �蹱�

2.  å¾㛖�å§枏�ï¼��鞾�ç§�(�𣂼�大學è³��å·¥ç��𠉛©¶��)

中æ�é¡𣬚𤌍ï¼�KE-BERT: �鞟·´ç¿垍䰻è­睃�å¼·è�表示模å��¼è�è¨���§£
�±æ�é¡𣬚𤌍ï¼�KE-BERT: Pre-training of Knowledge-Enhanced Word Representation For Language Understanding
����蹱�ï¼��³å��� �蹱�

3.  å¾㛖�å§枏�ï¼��³æ���(�ºç�大學è³��å·¥ç��𠉛©¶��)

中æ�é¡𣬚𤌍ï¼�å¼訫����審æ䰻�羓�辯中�滩�é»硺�ç¶𨅯�審稿è©閗����
�±æ�é¡𣬚𤌍ï¼�Incorporating Peer Reviews and Rebuttal Counter-Arguments for Meta-Review Generation
����蹱�ï¼��³ä¿¡å¸� �蹱�

4.  å¾㛖�å§枏�ï¼��³é�å®�(�½æ�交é�𡁜¤§å­¸äººå·¥æ惣�§æ�è¡栞��厩鍂碩士學ç�å­¸ä�)

中æ�é¡𣬚𤌍ï¼��ºæ䲰å°齿�å¼讛�é»墧㟲����堒�ç·´ç�

�±æ�é¡𣬚𤌍ï¼�Incorporating Peer Reviews and Rebuttal Counter-Arguments for Meta-Review Generation

����蹱�ï¼�ç°¡ä�å®� �蹱�����½ç� �蹱�