第å�ä¹嘥��𡁶¢©å£�è«𡝗��𤾸��𤾸���

�𡁜£«è«𡝗��𠬍�

�ªç��𦒘��㵪��²ç��睲��¬å��羓���

 1.å¾㛖�å§枏�ï¼� é»�𨫢ç¾�(�𣂼�大學è³��å·¥ç�å­��𠉛©¶��)

中æ�é¡𣬚𤌍ï¼��ºæ䲰æ¿��¼æ�§è��³å��劐����è­睃ê̌�¼æ����§ç𪆴���測ä��𠉛©¶

�±æ�é¡𣬚𤌍ï¼�A Study on Emotion Recognition from Elicited Speech Responses for Mood Disorder Detection

����蹱�ï¼��³å��� �蹱�

 

 2.å¾㛖�å§枏�ï¼�è³´æ�å»�(æ¸�虾大學è³��å·¥ç�å­¸ç�究æ�)
  
中æ�é¡𣬚𤌍ï¼𡁜⏚�¨æ·±åº¦è��誩­¸ç¿鍦�å¼·æ�件中�䭾��𡏭��䁅�:�厩鍂�¨å����-�¾ç�-�ºå�è·¯å�
  
�±æ�é¡𣬚𤌍ï¼�
Using Deep Semantic Learning to Enhance Summarization of Causal-Relationship in Literature: Applied in Chemical-Disease-Gene Pathway
   ����蹱�ï¼朞㷍å®㛖¿° �蹱���¨±�𧼮� �蹱����è±鞉� �蹱�

ä½³ä��𠬍�å¾䂿¼º

碩士è«𡝗��𠬍�

�ªç��𦒘��㵪��²ç��睲��¬å��羓���

å¾㛖�å§枏�ï¼𡁜�å³´é�(�ºç�大學è³��ç§穃­¸ç¢©å£«å­¸ä�å­¸ç�)
中æ�é¡𣬚𤌍ï¼��¼æ𧊋è¦见臁�³ç¢Zå¢��以é���边å¼誩�調é��¼è��³å�å¼·ä��𠉛©¶
�±æ�é¡𣬚𤌍ï¼�A Study of Unsupervised Domain Adaptation in Speech Enhancement under Unseen Noise Environments
����蹱�ï¼𡁏𣳿�� �蹱����å®𤩺� �蹱�

ä½³ä��𤾸��㵪��²ç��睲�ä»笔��羓���

1.  å¾㛖�å§枏�ï¼𡁏��±å�(�𣂼�大學è³��å·¥ç���)

中æ�é¡𣬚𤌍ï¼��ºæ䲰�ªæ綫����𡁶鍂�见蘂編碼��

�±æ�é¡𣬚𤌍ï¼�General Sentence Encoder based on Self-Inference

����蹱�ï¼𡁻�å®誩� �蹱�

2.  å¾㛖�å§枏�ï¼𡁜­£å¤§ä¸­(�°ç�大學è³��å·¥ç��𠉛©¶��)

中æ�é¡𣬚𤌍ï¼朞·¨èª噼���虾è§��èª䂿¾©è¡¨å¾µä¹见­¸ç¿�
�±æ�é¡𣬚𤌍ï¼�Learning Crosslingual and Explainable Sense-Level Word Representations
����蹱�ï¼𡁻䒰ç¸訫� �蹱�

3.  å¾㛖�å§枏�ï¼朞㷍�¥è�(交é�𡁜¤§å­¸é𤓖æ©笔·¥ç¨讠³»ç¢©å£«��)

中æ�é¡𣬚𤌍ï¼�深度è®羓㺭�§å­¸ç¿坿�åº誩����ä¹讠�ç©�

�±æ�é¡𣬚𤌍ï¼�Neural Variational Inference for Sequence Generation

����蹱�ï¼�ç°¡ä�å®� �蹱�

4.  å¾㛖�å§枏�ï¼𡁻�å¥蓥¸­(交é�𡁜¤§å­¸é𤓖æ©笔·¥ç¨讠³»ç¢©å£«��)

中æ�é¡𣬚𤌍ï¼��¨æ�è·³è�å¼讐��𧢲䲰深度學ç�ä¹讠�ç©�

�±æ�é¡𣬚𤌍ï¼�Stochastic Temporal Difference Learning and Planning

����蹱�ï¼�ç°¡ä�å®� �蹱�