第å��«å��𡁶¢©å£�è«𡝗��𤾸��𤾸���
�𡁜£«è«𡝗��𠬍�
�ªç��𦒘��㵪��²ç��睲��¬å��羓���
å¾㛖�å§枏�ï¼𡁶�ç·垍�(�°ç�大å¸�»ä¿¡�𠉛©¶��)
䏿�é¡𣬚𤌍ï¼𡁜�æ³¢ç�è«𡝗䲰èª鮋𨺗è¨𡃏�å¢𧼮¼·�羓鸌å¾µå�ç¸�
�±æ�é¡𣬚𤌍ï¼�Wavelet Speech Enhancement and
Feature Compression
����蹱�ï¼朞��誯� �蹱���𣳿�� �蹱�
ä½³ä��𦒘��㵪��²ç��睲��¬å��羓���
å¾㛖�å§枏�ï¼𡁻䒰�嘥�(ä¸å¤®å¤§å¸è³��å·¥ç�å¸ç�ç©¶æ�)
䏿�é¡𣬚𤌍ï¼𡁏����æ½𥕦銁è®𦠜彍模å��¼è��躰¡¨ç¤ºæ�å¸ç�
�±æ�é¡𣬚𤌍ï¼�Probabilistic Latent
Variable Model for Learning Data Representation
����蹱�ï¼𡁶�å®¶æ� �蹱�
碩士è«𡝗��𠬍�
�ªç��𦒘��㵪��²ç��睲��¬å��羓���
å¾㛖�å§枏�ï¼𡁻楃佩å�(�ºç�大å¸�»ä¿¡å·¥ç���)
䏿�é¡𣬚𤌍ï¼帋½¿�¨æ·±åº¦å¼·�硋¸ç¿埝�è¡栞��¯è�練模�¬ä½¿�¨è���äº鍦�å¼讛��³æ彍ä½滚�容檢ç´�
�±æ�é¡𣬚𤌍ï¼�Interactive Spoken
Content Retrieval with Deep Reinforcement Learning and Trainable User Simulator
����蹱�ï¼𡁏�å®𤩺� �蹱�
ä½³ä��𦒘��㵪��²ç��睲�ä»笔��羓���
1. å¾㛖�å§枏�ï¼𡁻��²å�(交é��大å¸�»æ�å·¥ç�å¸ç³»)
䏿�é¡𣬚𤌍ï¼𡁻¦¬�¯å¤«�噼¿´ç¥䂿�網路�¼æ�åº𤩺�§æ·±åº¦å¸ç¿雴��𠉛©¶
�±æ�é¡𣬚𤌍ï¼�Markov Recurrent Neural Networks
for Sequential Deep Learning
����蹱�ï¼𡁶°¡ä»���蹱�
2. å¾㛖�å§枏�ï¼𡁜𧂈å¿埈�(�°ç�大å¸è³��網路���åª㘾���)
䏿�é¡𣬚𤌍ï¼𡁻�層è��𤩺綉�¶ä��ªç�èª噼���§£��䌊�訫�話æ�è¦�
�±æ�é¡𣬚𤌍ï¼�Natural Language
Understanding and Dialogue Summarization with Gating Mechanisms in Two-Level
Semantics
����蹱�ï¼𡁻䒰ç¸訫� �蹱�
3. å¾㛖�å§枏�ï¼𡁻��𤩺惣(�°ç�大å¸è³��å·¥ç��𠉛©¶��)
䏿�é¡𣬚𤌍ï¼𡁜抅�¼ç𤌍æ¨蹱³¨�誩�æ©笔���´°ç²鍦º¦������
�±æ�é¡𣬚𤌍ï¼�Target Attention Networks for
Targeted Sentiment Analysis
����蹱�ï¼��å�å£� �蹱����ä¸硋� �蹱�