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Machine Translation: A Score Years Ago
Chia-Ping Chen

Abstract

In this article, I will review a classic paper on 5 statistical models, also known as the IBM Models,

of machine translation. These models are presented in the order of complexity. In this way, a reader can

clearly see the incremental improvements, by understanding the critical issues in the old models that the

new models try to address. Although the paper was written almost twenty years ago, to me the joy of

reading it has not faded over the years.

Index Terms

machine translation, IBM models

I. INTRODUCTION

The methodology for treating the machine translation problem in the paper by Brown et al. [1] is a

statistical one. Therein, the fundamental equation of machine translation is given by

ê = argmax
e

Pr(e)Pr(f |e), (1)

where f is a sentence in French, and e is a candidate sentence in English. Pr(e) is called the language

model, and Pr(f |e) is called the translation model. It is important to note that the direction of translation

is from French to English in (1). The translation in the opposite direction is an entirely different problem.

In order to understand (1), it may help to follow an imaginative scheme: Believe it or not, the creator of

a French text thinks in English! He first mentally composes the English text, denoted by e, for his thought.

Then he mentally translate the English text to French, denoted by f . The task of machine translation is

to come up with methods to decide ê based on f such that the probability that ê �= e is minimized. This

is illustrated in Fig. 1.

We can see from (1) that there are three core problems in this formulation as follows:

Chia-Ping Chen is with the Department of Computer Science and Engineering, National Sun Yat-Sen University. Address: 70

Lien-Hai Road, Kaohsiung, Taiwan 804; Phone: +886.7.525.2000; Fax: +886.7.525.4301; Email: cpchen@mail.cse.nsysu.edu.tw
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mental mental
decoder

thought

machine translation system

translationcomposition

e

language model Pr(e)

translation model Pr(f |e)

ê
f

Fig. 1. Imaginative scheme for machine translation. A person’s thought is mentally composed in English, and translated to

French. The decoder is a machine translation system designed to minimize the probability of error Pr(ê �= e).

• to propose adequate models for Pr(e) and Pr(f |e);

• to estimate the parameters in the proposed models;

• to search for the optimal candidate ê.

The IBM models are special cases of translation models Pr(f |e). Note it is not important for Pr(f |e)

to concentrate on well-formed French sentences, as a well-formed f will always be given in a translation

from French to English. That is why we are going to see a few strangely constructed f in the development

of the theory.

II. ALIGNMENT

Assuming certain readers are familiar with the automatic speech recognition (ASR), I am going to draw

an analogy∗. In ASR, the training data for the acoustic model comes in pairs, with each pair consisting of

a waveform and a phoneme (or word) sequence. It is not unusual that the phoneme boundary times in the

∗An alerted reader has probably already noticed that (1) has the same form as the fundamental equation of ASR

Ŵ = argmax
W

Pr(W )Pr(A|W ),

where Pr(e) is replaced by the language model Pr(W ), and Pr(f |e) is replaced by the acoustic model Pr(A|W ). In fact,

both equations are instances of the noisy-channel communication scenario. In speech recognition, a speaker (source) has some

text in mind, then he generates speech waveform for the text. The recognizer has to decode the hidden text based on the

observed waveform. In machine translation, a person (source) thinks in English, but he generates French for the thought in

English. The translator has to decode the hidden English based on the seen French. Fred Jelinek was the leader of the IBM

research group at the times these models are proposed. He did his Ph.D. thesis in information theory under Robert Fano in

MIT. It is not coincidental that such a information-theoretic thinking plays fundamental roles in modern statistical language and

speech processing.
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waveform are left unspecified, and somehow we need to decide the detailed correspondence between the

waveform segments and the phonemes. This detailed correspondence is known as the “alignment”, and we

have the operation known as “forced alignment” to estimate the correspondence. In machine translation

(MT), the training data for the translation model also comes in pairs, with each pair consisting of a

sentence f in French and a sentence e in English. Therefore, for each word e in e, we would like to

know the corresponding words in f . This correspondence essentially manifests the same idea as the

alignment in ASR.

The alignment in MT for the translation model is slightly more complicated than the alignment in

ASR for the acoustic model. In ASR, the alignment is almost always left-to-right. In MT, on the other

hand, the correspondence are often out-of-order, and the words corresponding to the same word may be

non-contingent. Therefore, MT necessarily requires a more complicated scheme of alignment than ASR.

“Words” may appear to be natural enough to be the labeling units for sentences. However, in the later

development of machine translation, the “phrase-based” approaches have been proposed [2]. The “phrases”

are actually “alignment templates” derived from the alignment between words of parallel sentences. That

is the core technology of the Google translator, and would be an interesting subject, but we will not

pursuit it in this article.

Treating the sentences f , e and the alignment, denoted by a, as random variables, we can write

Pr(f |e) =
∑
a

Pr(f ,a|e). (2)

Assuming e has l words and f has m words, without loss of generality, we can factorize the joint

probability Pr(f ,a|e) by

Pr(f ,a|e) = Pr(m|e)
m∏
j=1

Pr(aj|a
j−1
1 , f

j−1
1 ,m, e)Pr(fj |a

j
1, f

j−1
1 ,m, e), (3)

where aj is the position of the English word that fj is aligned to, i.e.,

eaj
← fj. (4)

In (3), it is implicitly assumed that each French word is aligned to at most one English word. Those

French words not aligned to any English word is said to be aligned to the “null word”, denoted by e0.

From the perspective of an English word ei, it can be aligned to 0 or multiple French words, which

happens if

aj �= i ∀j, or aj = aj′ ∃j �= j′. (5)
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Pr(f1|a, m, e) = t(f1|ea1)

amam−1. . .

m

a1 a2

e = e1 . . . el

f = f1 . . . fm

. . .

P r(m|e) = ε

Pr(am|m, e) = 1
l+1

Pr(fm|f
m−1
1 , a, m, e) = t(fm|eam)

Pr(a1|m, e) = 1
l+1

Fig. 2. The generating process of Model 1.

III. MODEL 1

Referring to the general probability factorization (3), in Model 1 it is assumed that

• ε � Pr(m|e) is independent of m and e;

• Pr(aj |a
j−1
1 , f

j−1
1 ,m, e) depends only on l, and consequently must be (l + 1)−1;

• Pr(fj|a
j
1, f

j−1
1 ,m, e) depends only on fj and eaj

, thus defining a translation probability

t(fj |eaj
) � Pr(fj|a

j
1, f

j−1
1 ,m, e). (6)

With these assumptions, (3) becomes

Pr(f ,a|e) =
ε

(l + 1)m

m∏
j=1

t(fj|eaj
), (7)

and the “likelihood” of the parallel sentences (f |e) is given by

Pr(f |e) =
∑
a

Pr(f ,a|e) =
ε

(l + 1)m

l∑
a1=0

· · ·
l∑

am=0

m∏
j=1

t(fj|eaj
). (8)

The translation probabilities t(f |e) are estimated to maximize Pr(f |e) subject to the constraints that

∑
f

t(f |e) = 1, ∀e. (9)

The generating process is depicted in Fig. 2.

An iterative algorithm can be used to estimate t(f |e), given an initial estimate and a training set of

parallel sentences. The basic idea of iteration is as follows.
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• The word-pair count, denoted by c(f |e; f , e), is accumulated over the set of training parallel sen-

tences, based on the number of co-occurrences of (f, e) and the current estimate of t(f |e);

• These counts are renormalized to update the estimate of t(f |e).

The count of an instance of co-occurrence of e, f is weighted by the posterior probability of an

alignment a in which f is aligned to e. The non-integral count of Pr(a|f , e) is also known as the

“probability count” or the “soft count”. From the definition of posterior probability, we have

Pr(a|f , e) =
Pr(f ,a|e)

Pr(f |e)
. (10)

In (10), the numerator, the joint probability Pr(f ,a|e), can be straightforwardly computed. For the

denominator, the data-likelihood Pr(f |e), it turns out the summation in (8) can be re-written as

Pr(f |e) =
l∑

a1=0

· · ·
l∑

am=0

m∏
j=1

t(fj|eaj
) =

m∏
j=1

l∑
i=0

t(fj |ei). (11)

It turns out that (11) makes the computation for the count c(f |e; f , e) exact and efficient, which remains

the same way in Model 2.

IV. MODEL 2

Referring to the general probability factorization (3), in Model 2 it is assumed that

• ε � Pr(m|e) is independent of m and e (the same as Model 1);

• Pr(aj |a
j−1
1 , f

j−1
1 ,m, e) depends only on j, aj , and m, as well as on l, thus defining an alignment

probability

a(aj |j,m, l) � Pr(aj|a
j−1
1 , f

j−1
1 ,m, e); (12)

• Pr(fj|a
j
1, f

j−1
1 ,m, e) depends only on fj and eaj

, which is modeled by a translation probability

t(f |e) (the same as Model 1).

The generating process with the new probability is depicted in Fig. 3. With these assumptions, (3) is

reduced to

Pr(f |e) = ε

l∑
a1=0

· · ·
l∑

am=0

m∏
j=1

t(fj|eaj
)a(aj |j,m, l). (13)

Along with the translation probabilities t(f |e), the alignment probabilities a(aj |j,m, l) are jointly

estimated to maximize Pr(f |e) subject to the constraints that

l∑
i=0

a(aj = i|j,m, l) = 1, ∀j,m, l. (14)
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amam−1. . .

m

a1 a2

e = e1 . . . el

f = f1 . . . fm

. . .

P r(m|e) = ε

Pr(fm|f
m−1
1 , a, m, e) = t(fm|eam)Pr(f1|a, m, e) = t(f1|ea1)

Pr(am = i|m, e) = a(i|j = m,m, l)Pr(a1 = i|m, e) = a(i|j = 1, m, l)

Fig. 3. The generating process of Model 2. Compared to Model 1, the alignment probability is modified.

The aforementioned iterative algorithm to estimate t(f |e) can be adapted to estimate t(f |e) and a(i|j,m, l)

jointly.

Note that Model 1 is a special case of Model 2, so the parameters of Model 2 can be initialized by the

parameters of Model 1. Specifically, one can compute the alignment probability by Model 1 with t(f |e),

and then collect the required counts to initialize a(i|j,m, l) of Model 2.

V. FERTILITY AND PERMUTATION

Another generating process from given e to f is as follows. The number of words the word ei in

e generates is called the fertility of ei, denoted by Φei , and sometimes abbreviated by Φi when there

is no ambiguity. The list of words for ei is denoted by Ti, called the tablet of ei. The k-th word in

Ti is denoted by Tik. The collection of Ti is denoted by T, called the tableau of e. The words in a

tableau are permuted to produce f . The permutation is denoted by Π, in which the position of the

word Tik is denoted by Πik. Note that from instantiations of tableau T = τ and permutation Π = π, the

corresponding instantiations of alignment a and French string† f are determined.

According to this generating process, the conditional probability of T = τ,Π = π given e can be

†Note we say “string” instead of “sentence” for reasons to be stated later.
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factorized as

Pr(τ, π|e) =
l∏

i=1

Pr(φi|φ
i−1
1 , e) × Pr(φ0|φ

l
1, e) ×

l∏
i=0

φi∏
k=1

Pr(τik|τ
k−1

i1 , τ i−1
0 , φl

0, e) ×

l∏
i=1

φi∏
k=1

Pr(πik|π
k−1

i1 , πi−1
1 , τ l0, φ

l
0, e) ×

φ0∏
k=1

Pr(π0k|π
k−1

01 , πl
1, τ

l
0, φ

l
0, e).

(15)

The generating process is depicted in Fig. 4.

It is important to recognize e0 as the null English word. We use e0 for those French words not aligned

to any English words in Models 1 and 2. It has the same function in the current generating process. In

the current generating process, it is used to make the numbers of the words in the tableau sum to m, i.e.,

Φe0 = m−
l∑

i=1

Φei , or φ0 = m−
l∑

i=1

φi. (16)

VI. MODEL 3

Referring to the factorization (15) based on the generation process of fertility and permutation, in

Model 3 it is assumed that

• Pr(φi|φ
i−1
1 , e) for i = 1, . . . , l depends only on ei and φi;

• Pr(τik|τ
k−1

i1 , τ i−1
0 , φl

0, e) for i = 0, . . . , l depends only on τik and ei;

• Pr(πik|π
k−1

i1 , πi−1
1 , τ l0, φ

l
0, e) for i = 1, . . . , l depends only on πik, i,m, and l;

The corresponding probability functions in Model 3 are

• n(φ|ei) � Pr(Φei = φ|φi−1
1 , e) is called the fertility probability;

• t(f |ei) � Pr(Tik = f |τ k−1
i1 , τ i−1

0 , φl
0, e) is the translation probability, the same as in Models 1−2;

• d(j|i,m, l) � Pr(Πik = j|π k−1
i1 , πi−1

1 , τ l0, φ
l
0, e) is called the distortion probability;

• For the fertility Φe0 , the probability function is

Pr(Φe0 = φ0|φ
l
1, e) =

⎛
⎝φ1 + · · ·+ φl

φ0

⎞
⎠ p

φ1+···+φl−φ0

0 p
φ0

1 , where p0 + p1 = 1. (17)

• For the permutation Π0k, the probability function is

Pr(Π0k = j|π k−1
01 , πl

1, τ
l
0, φ

l
0, e) =

⎧⎪⎨
⎪⎩

1
φ0−(k−1) , if j is vacant

0, otherwise
(18)
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φ0

. . .

e = e1 . . . el

φl−1 φlφ2φ1 . . .

π11 . . . π1φ1
. . . πl1 . . . πlφl

T = τ01 . . . τ0φ0
. . . τl0 . . . τlφl

f

π01 . . . π0φ0

Fig. 4. The generating process based on fertility and permutation. This is the basis for Models 3− 5.

A pair of instances of tableau and permutation (T = τ,Π = π) correspond to a unique pair of string

and alignment (f ,a). With the assumed probability functions, (15) becomes

Pr(τ, π|e) =
l∏

i=1

n(φi|ei)

⎛
⎝φ1 + · · · + φl

φ0

⎞
⎠ p

φ1+···+φl−φ0

0 p
φ0

1 ×

m∏
j=1

t(fj |eaj
)×

m∏
j=1

d(j|aj ,m, l)×

1

φ0!
,

(19)

where fj is the French word in the j-th position of f , aj is the position of the English word that fj is

aligned to, and m is the length of f . The display of (19) purposely parallels (15) for the readers to follow

the correspondence.
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It is interesting to note that in Model 3 the generated string f is allowed to skip word positions. Such

a string is called a generalized string. Contrarily, the sentences we have been thinking about are called

the normal strings, where each position is occupied by exactly one word. The assignment of non-zero

probability to the non-normal strings brings up the issue of deficiency, which will be addressed in a later

model.

The number of indistinguishable tableau-permutation pairs for (f ,a) is

l∏
i=0

φi!. (20)

That is, (20) is the total number of pairs of (τ, π) that result in the same (f ,a). Using (20) and (16), we

have

Pr(f |e) =
∑
a

Pr(f ,a|e)

=
∑
a

⎛
⎝m− φ0

φ0

⎞
⎠ p

m−2φ0

0 p
φ0

1

l∏
i=1

n(φi|ei)×
m∏
j=1

t(fj |eaj
)d(j|aj ,m, l)×

l∏
i=1

φi!.

(21)

Unlike Model 1 and Model 2, the counts we need in order to update the probabilities are no longer

exactly and efficiently computable. Suffice to say that we fall back to certain approximate schemes to

accumulate the counts. Specifically, the summation over the set of all alignments A(e, f) between e and

f is approximated by the summation over a subset S of A(e, f) given by

S = N (b∞(V (e|f ;2)))
⋃
∪
ij
N (b∞i←j(Vi←j(e|f ;2))), (22)

where the meanings of the notations are

• V (e|f ;2): the alignment a with the maximum Pr(a|e, f) based on Model 2, also called the Viterbi

alignment‡;

• Vi←j(e|f ;2): the Viterbi alignment in the subset of A(e, f) where ij is pegged§;

• b∞(a): the alignment of convergence in the series bk+1(a) � b(bk(a)), where b(a) is a neighbor¶

of a with the maximum posterior probability;

‡Instead of Model 3, Model 2 is used because the Viterbi alignment can be obtained efficiently.

§ij is said to be pegged in an alignment a if aj = i.

¶By definition, two alignments a and a
′

– differ by a move if aj �= a′
j for exactly one j;

– differ by a swap if there exist j �= j′ such that aj = a′
j′ , aj′ = a′

j and ak = a′
k for k �= j, j′.

a
′ is a neighbor of a if a′ = a, or they differ by a move, or they differ by a swap.
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• N (a) is the set of all neighbors of a;

• b∞i←j(a): the alignment of convergence in the series bk+1
i←j(a) � bi←j(b

k
i←j(a)), where bi←j(a) is the

neighbor of a with the maximum posterior probability and ij is pegged;

VII. DEFICIENCY

The probability factorization for Pr(τ, π|e) as shown in (19) enables us to quickly compute the

posterior probabilities of the neighbors of an alignment, which is crucial in the approximation for the

parameter estimation of Model 3.

As is pointed out in Section VI, one issue about Model 3 is that it is deficient. In Model 3, part of the

probability mass is assigned to the generalized French strings. In fact, Models 1 − 2 assign probability

to sentences that are not well-formed, so they are also deficient in a different sense.

Note that deficiency is merely an “issue” rather than a “problem”, (or a “warning” but not a “bug”), as

in the current translation direction from French to English, a well-formed French sentence f will always

be given. Under the circumstances, probabilities computed using Models 1 − 3 are proportional to the

conditional probabilities that f is a well-formed sentence, so it is not a problem.

VIII. MODEL 4

It is noted that in Model 3, the movement of a long phrase will incur large distortion penalty (i.e. low

probability) as each word in the phrase is treated the same way as moving independently. However, it is

common sense (to linguists, at least) that the words constituting a phrase tend to move around a sentence

jointly, rather than independently. Therefore, in Model 4, the probability model for distortion is modified

to allow easier phrase movements than in Model 3.

In Model 3, an English word, say ei, generates a tablet of φi words, τi1, . . . , τiφi
. If φi > 0, ei is an

one-word cept‖ and the corresponding φi words aligned to ei constitute a phrase in a loose sense.

In Model 4, two sets of probability are introduced to make the joint movement of the French words

corresponding to a one-word cept easier:

• the probability to place the first word, called the head word, in the one-word cept;

• the probability to place the remaining words, if any;

For the head word, the probability for placing the head word of the i-th one-word cept is

Pr(Π[i]1 = j|π
[i]−1
1 , τ l0, φ

l
0, e) � d=1(j −Θi−1|A(e[i]−1),B(fj)), [i] > 0. (23)

‖A cept is a fraction of a con-cept.

17



Note that in (23)

• [i] denotes the position in the English sentence of the i-th one-word cept (note [i] ≥ i, since φi′

could be 0 for some English words ei′);

• Θi is the center (ceiling of average) of the positions for the French words generated by ei;

• j −Θi−1 is called the displacement of cept i, measured from the previous cept;

• A(e) and B(f) are the word classes of the English word e and the French word f respectively.

For the remaining non-head words, the probability for placing the k-th word of the i-th one-word cept

is

Pr(Π[i]k = j|π k−1
[i]1 , π

[i]−1
1 , τ l0, φ

l
0, e) � d>1(j − π[i]k−1|B(fj)), [i] > 0, k > 1. (24)

Note that in (24), d>1(n|B(f)) = 0 for n ≤ 0. That is, the condition π[i]k > π[i]k−1 is enforced, meaning

the words τ[i]1, . . . , τ[i]φ[i]
in a cept must be placed left-to-right in f .

Again in Model 4, the counts we need in order to update the probabilities are not exactly and efficiently

computable. Instead, the summation is over a subset S of A(e, f) given by

S = N (b̃∞(V (e|f ;2)))
⋃
∪
ij
N (b̃∞i←j(Vi←j(e|f ;2))). (25)

The difference between the set (25) used in Model 4 and the set (22) used in Model 3 is b̃(a) and b(a).

Recall that b(a) is the neighbor of the alignment a with the highest posterior probability Pr(·|f , e;3).

Here, to find b̃(a) requires us to firstly rank the neighbors of a by the posterior probability Pr(·|f , e;3),

then to look for the highest-ranking neighbor a′ with Pr(a′|f , e;4) ≥ Pr(a|f , e;4), and set a′ = b̃(a).

IX. MODEL 5

Model 5 is introduced to deal with the issue of deficiency. In Model 5, the probability for placing the

head word of the i-th one-word cept is

Pr(Π[i]1 = j|π
[i]−1
1 , τ l0, φ

l
0, e) � d=1(vj |B(fj), vΘi−1

, vm − φ[i] + 1)(1 − δ(vj , vj−1)), (26)

where vj is the number of vacancies up to and including position j just before we place τ[i]k in f . Note

that

• (1− δ(vj , vj−1)) ensures that position j must be vacant if a head word is to be placed there;

• vm−φ[i]+1 is the number of vacancies pre-excluding those to be occupied by the remaining words

of the i-th one-word cept;

• vΘi−1
is the number of vacancies up to and including the center of the previous one-word cept, i.e.,

position Θi−1;
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For the non-head words, the probability for placing the k-th word of the i-th one-word cept is

Pr(Π[i]k = j|π k−1
[i]1

, π
[i]−1
1 , τ l0, φ

l
0, e)

� d>1(vj − vπ[i]k−1
|B(fj), vm − vπ[i]k−1

− φ[i] + k)(1− δ(vj , vj−1)), [i] > 0, k > 1.

(27)

A set based on and trimmed from the set defined by (25) is used to gather the counts required for the

parameter estimation in Model 5.

Both Models 3 and 4 are deficient. From (26) and (27), we make sure that at any point of the generating

process from e to f , the word to be placed must occupy a vacant position. Thus Model 5 is no longer

deficient.

X. CONCLUSION

In this article, I try to convince the readers that machine translation is an interesting problem, by going

through the classic paper by Brown et al. I hope the readers can enjoy the mathematical treatment as much

as I did when I first came across it a decade ago. I was truly thrilled to see that mathematics, statistics,

and engineering can be combined so beautifully to tackle the real problem of machine translation.

Peter Brown and Bob Mercer left IBM and joined the Renaissance Technologies, which stands today

as the richest hedge fund investment company, shortly after they published this paper. They are co-CEOs

as of the year of 2010. For another example for the variety of achievements by the people working on

machine translation, I will add that Krzysztof Jassem [3][4] from Poland, is a world life master in the

game of bridge.

XI. EPILOGUE

While writing this article, I heard about the sad news that Fred Jelinek passed away (18 November

1932 - 14 September 2010). Professor Jelinek was a critical fellow in applying statistical approaches to

machine translation [5]. According to himself, he actually stumbled upon speech and language processing.

Nonetheless, I believe he is one of the greatest founders of modern automatic speech recognition and

machine translation with the statistical methodology. I have the impression that he has ways to explain

statistical automatic speech recognition clearly [6].
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