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Abstract 

To better understand and utilize lexical and syntactic mapping between various 
language expressions, it is often first necessary to perform sentence alignment on the 
provided data. Up until now, the character trigram overlapping ratio was considered 
to be the best similarity measure on the text simplification corpus. In this paper, we 
aim to show that a newer embedding-based similarity metric will be preferable to 
the traditional SOTA metric on the paragraph-paraphrased corpus. We report a series 
of experiments designed to compare different alignment search strategies as well as 
various embedding- and non-embedding-based sentence similarity metrics in the 
paraphrased sentence alignment task. Additionally, we explore the problem of 
aligning and extracting sentences with imposed restrictions, such as controlling 
sentence complexity. For evaluation, we use paragraph pairs sampled from the 
Webis-CPC-11 corpus containing paraphrased paragraphs. Our results indicate that 
modern embedding-based metrics such as those utilizing SentenceBERT or 
BERTScore significantly outperform the character trigram overlapping ratio in the 
sentence alignment task in the paragraph-paraphrased corpus. 
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1. Introduction 

Monolingual text matching is necessary for many downstream applications, such as Paraphrase 
Identification and Extraction (Qiu et al., 2006), Question Answering (Weiss et al., 2021), 
Natural Language Inference (MacCartney & Manning, 2008), and Text Generation (Barzilay & 
McKeown, 2005). Take the QA task as an example, identifying the text fragments that match 
the given question within the associated passage is often required for locating the desired answer. 

However, modern neural network (NN) approaches to text matching often suffer from 
certain limitations when two sequences contain considerably different lexicons or diverse 
grammatical structures (McCoy et al., 2019). For example, when the verb “decide” in the 
sentence “They decided to go” is nominalized to the noun “decision” in its paraphrase “They 
made a decision to go”, the popular word embedding similarity approach might fail as the 
embedding-vectors of “decide” and “decision” are quite different1. Another example is a pair 
of sentences “A cat is chasing a dog.” and “A dog is chasing a cat.”, which contain the same 
set of lexicons and syntactic structure but with opposite meanings. 

Furthermore, the NN approaches frequently fail when the matching involves multi-word 
expressions, or when expressions require compositionality handling (Blevins et al., 2018; 
Hupkes et al., 2020; Zhou et al., 2020). For example, it is difficult to match expressions “put 
off” and “procrastinate” using basic word embeddings, as the real meaning of the idiom “put 
off” is not the sum of the meanings of its tokens. 

We found that the limitations of NN models in text matching could be greatly alleviated 
by utilizing lexico-syntactic paraphrasing patterns such as [VP[VBN[see]NP[X1]]] 
[S[NP[X1]VP[VBD[be]VP[observe]]], which denotes the conversion from active to passive voice 
for the phrase pair “see the lion” and “the lion is observed”. Since some key lexicons are 
involved in the pattern, it would be difficult to exhaustively list such patterns by a human. It is 
preferable to automatically extract them from a large paraphrase corpus. 

To collect such lexico-syntactic patterns, a high-quality paraphrased sentence pair dataset 
is essential. Unfortunately, current sentence-aligned paraphrase datasets (e.g., MRPC (Dolan & 
Brockett, 2005), PPDB (Ganitkevitch et al., 2013), and QQP (Aghaebrahimian, 2017)) are too 
trivial for this task, as they mainly contain lexical paraphrases that could be easily handled by 
a NN. On the other hand, some paragraph-aligned paraphrase corpora, containing different 
human translations from the same source text, fit our needs well. To utilize those paragraph-

 
1 The nearest semantic associates of the verb decide based on the cosine similarity between the word2vec 

vectors (trained on English Wikipedia) are those verbs such as: choose (0.64), opt (0.62), persuade 
(0.61), want (0.58), refuse (0.57), insist (0.56). However, the noun decision only has a similarity score 
0.512, which means that its similarity to the verb decide is even less than that between decide and its 
quasi-antonymous refuse. 
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aligned paraphrase corpora, monolingual sentence alignment is the first step in retrieving the 
desired patterns. 

 
Figure 1. Sentence alignment for extracting paraphrased sentence pairs. Sentence        

pairs in green are those we want to extract; sentences in red are in multi-
to-one relation and do not constitute sentential paraphrases. Figure 
adopted from Smolka et al. (2022). 

Figure 1 shows how a correct sentence alignment could help extract paraphrased sentence 
pairs from longer paraphrased texts. Unless we correctly identify which sentences are in 1-to-1 
relationships (green in the figure), we cannot correctly identify the desired paraphrased pattern. 

Monolingual sentence alignment approaches could be classified into two categories: 
model-based approaches (e.g., Jiang et al., 2020), which adopt specific models to encode the 
input sentences and perform alignment, and model-agnostic approaches (Štajner et al., 2018), 
which can be directly applied to the selected dataset, without the necessity of training a neural 
model in advance. In our work, we focus on model-agnostic approaches, as they do not require 
additional labeled data to train the model. 

The downside of previous model-agnostic approaches (Štajner et al., 2017; 2018) is that 
they only test the early word2vec word embeddings, and do not explore those more advanced 
NN approaches such as Sentence-BERT (Reimers & Gurevych, 2019) and BERTScore (Zhang 
et al., 2020). Also, they are mainly evaluated on Text Simplification (TS) datasets, which are 
different from our paraphrasing datasets. 

In the TS dataset, the original and the simplified text often share a considerable number of 
keywords, which remain unchanged and are rarely substituted with synonyms. However, this 
property does not hold in our paraphrasing corpus, as its paraphrasing expressions usually 
possess diverse syntactic structures with many different lexical items. 
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Therefore, we suspect that the character trigram overlapping ratio, reported as the best for 
monolingual sentence alignment in previous works (Štajner et al., 2017; 2018), would not 
perform best on our data. Since our paraphrasing corpus contains considerably different 
lexicons and word order, the string-based method such as character ngram similarity would lose 
its edge. Previously reported text similarity measures thus should be re-evaluated for our task, 
and more advanced NN approaches should be explored. 

In this work, we not only compare various previously reported text similarity measures on 
a paraphrased paragraph corpus but also additionally test some new measures based on the most 
recent NN sentence embedding methods. We utilize those above measures with two sentence 
alignment approaches: simple greedy match (e.g., Štajner et al. 2018) and sequence match (Gale 
& Church, 1993; Barzilay & McKeown, 2001). We conduct the evaluation on a manually 
annotated sentence-aligned dataset with 400 paraphrased paragraph pairs randomly sampled 
from the multiple translation corpus Webis-CPC-11 (Burrows et al., 2013). 

Our contributions include: 

(1) To the best of our knowledge, we present the first study on aligning sentences on a 
paragraph-paraphrased corpus; 

(2) We show that character trigram similarity is not the best measure for aligning paraphrasing 
corpora. Instead, BERT-based embedding methods achieve significantly better results 
even without fine-tuning on the target dataset; 

(3) We test several NN-related sentence similarity measures (other than word2vec) that have 
not been evaluated before for model-agnostic monolingual sentence alignment; 

(4) We confirm and expand the observation of Choi et al., (2021), showing that [CLS] token 
representation is not necessarily superior to averaging individual word vectors for 
sentence representation while aligning paraphrased text under BERT. 

(5) We compare the sentence alignment methods when an additional sentence length 
limitation is imposed on the data. 

This publication is an extension of our previous conference paper on the same topic 
(Smolka et al., 2022). In comparison to our conference publication, we have added a new data 
collection method for composing a dataset with sentence length limitation and introduced a new 
series of experiments performed on this new data (Section 3.4.2). We also extend the previous 
comparison of different methods of obtaining sentence representations using the BERT model 
(Section 3.4.3), and add a new discussion section to report our observations (Section 5). Finally, 
we extend some of the previously existing sections by additionally illustrating our search 
mechanisms (Section 2.1, Figure 2), showing an example of a non-paraphrased paragraph pair 
(Section 3.5, Figure 5), and a new error example in the error analysis (Section 4, Table 12). 
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2. Sentence Alignment Procedure 

The proposed sentence alignment procedure is based on two basic elements, which we combine 
to test different experimental configurations. Those elements include: (1) search mechanism, 
which specifies the method used to search the sentence pairs that possess similar meaning; (2) 
similarity measure, which defines the method of calculating the similarity value among two 
given sentences (to be used during the search procedure). 

2.1 Search Mechanisms 
We implement two search mechanisms for aligning sentences among two paraphrased 
paragraphs: (1) Directional Best Match, which aligns each sentence in the paragraph separately 
(it also has two variations: uni-directional, which matches sentences from the first paragraph to 
the second one only, and bi-directional, which matches sentences in both directions), and (2) 
Sequence Match, which looks for the best alignment scheme for a paragraph as a whole. Figure 
2 schematically illustrates the difference in how the sentence pairs are formed in the different 
search mechanism approaches, which we describe in the next two subsections. 

 
Figure 2. Schematic comparison of the different search mechanisms, illustrating 

the direction in which sentences are paired. (a) Uni-directional Best 
Match; (b) Bi-directional Best Match; (c) Sequence Match. 
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2.1.1 Directional Best Match 
Directional Best Match is a simple greedy approach that relies on local judgments to create the 
alignments. This approach assumes that information such as adjacency and dependency 
information within sentences is negligible during matching. In our implementation, we follow 
the adopted SOTA approach (Štajner et al., 2018). However, Štajner et al. (2018) only 
experimented with a uni-directional approach, which maps the original passages to the 
corresponding simplified passages. We believe that the bi-directional approach would be better 
applicable to our data since it is symmetric, unlike the dataset used by Štajner et al. (2018). 
Therefore, we additionally extend the Best Match method to a bi-directional approach. 

Regardless of the above variation, we first calculate the associated similarity for each 
sentence pair that can be formed between the two given input paragraphs. Then, for each 
sentence in one paragraph, we select the sentence in another paragraph that has the highest 
similarity measure obtained above. For the uni-directional version, we directly take those pairs 
as the final alignments. 

The bi-directional version follows the same steps, but we additionally repeat them in the 
opposite direction, i.e., matching sentences from the second paragraph to the first one. The final 
aligned pairs are obtained by taking the intersection of the two sets of aligned sentence pairs. 

2.1.2 Sequence Match 
Our sequence match adopts the dynamic programming searching algorithm to look for the best 
alignment path (among the two given paragraphs). Our implementation follows the common 
approach described in previous works (Gale & Church, 1993; Barzilay & McKeown, 2001). In 
this method, each alignment type (e.g., one-to-one and one-to-two) is associated with a different 
weight indicating the type probability estimated from the development set. The weights are then 
combined with the above similarity measures to find the best alignment path for the whole 
paragraph. 

2.2 Similarity Measures 
The text similarity measures adopted in our experiments fall into two main categories: (a) unit-
overlap-based approaches, in which the similarity measure is based on the overlapping ratio of 
either ngrams or tokens between the sentences; (b) sentence-vector-based approaches, in which 
a neural model is first used to convert each sentence into its corresponding embedding-vector, 
and then the cosine similarity between these two sentence embedding-vectors is taken as the 
sentence similarity. 

 
 



 

 

                   Aligning Sentences in a Paragraph-Paraphrased               7 

Corpus with New Embedding-based Similarity Measures 

2.2.1 Unit-Overlap-Based Sentence Similarity 
We adopt two different overlapping ratios: (1) Character ngram, which is reported as the state-
of-art on the text simplification corpus (Štajner, 2018), and (2) token, which is commonly used 
in sentence alignment tasks (e.g., Barzilay & McKeown, 2001). 
Character Ngram 

We follow Štajner et al. (2018) to calculate the ngram similarity based on the Character Ngram 
Similarity model with tf-idf weighting (adapted from McNamee & Mayfield (2004)). We 
experiment with five different ngram sizes (1 to 5) and use NGRAM to refer to this measure. 
We add Laplace smoothing to account for those unseen ngrams in the test set. The final 
similarity is calculated by taking cosine similarity (Štajner et al., 2018). 
Token 

For calculating token-based sentence similarity, we use the following token overlap formula: 

where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 is the set of tokens in the first sentence, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 is the set of tokens in the 
second sentence, and the function | | specifies the cardinality of the token set. We consider two 
different normalization mechanisms for comparing two tokens: (1) converting the strings into 
their associated lemmas before comparison (abbreviated as TOKENstring); (2) also taking 
synonyms as exactly matched lemmas during comparison (abbreviated as TOKENsyn). Token 
lemmas for each sentence are retrieved using an automatic tokenizer and lemmatizer (Qi et al., 
2020). Synonymic relationships are taken from WordNet (Fellbaum, 1998). 

2.2.2 Sentence-Vector- Based Sentence Similarity 
This category includes similarity measures that utilize cosine vector similarity in some forms: 
(1) word-embedding based, where we first look up the word embedding-vector for every token 
in each sentence from a pretrained model, and then combine them into their associated sentence 
embedding-vector by vector averaging (Putra & Tokunaga, 2017). Afterward, we calculate the 
similarity between the two obtained sentence embedding vectors. (2) sentence-embedding based, 
where we use a model, such as BERT (Devlin et al., 2019) or Sentence-BERT (Reimers & 
Gurevych, 2019), to directly embed a sentence into its associated sentence-embedding. We then 
calculate the similarity between these two sentence embedding vectors. (3) BERTScore (Zhang 
et al., 2020), which uses BERT to directly generate the similarity value between two sentences. 
Word-embedding Similarity 

For directly retrieving the token-associated embedding vector from a pretrained embedding 
lookup table, we test both word2vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014) 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = |𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1∩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2|
|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1|+|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2|

  (1) 
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embeddings. Additionally, we also test contextualized word embeddings retrieved from BERT 
(Devlin et al., 2019). 

Moreover, while it is common to use the [CLS] token yielded by the BERT encoder to 
represent the whole encoded sentence, recent works note that this might not be the best solution 
for different downstream tasks (Choi et al., 2021). We therefore additionally test the following 
approach: generate the sentence embedding via averaging the contextual word embeddings 
retrieved from the BERT model. 

Regardless of the way of selecting word embedding, we combine the associated embedding 
vectors into the corresponding sentence representation by taking an average over them (Putra 
& Tokunaga, 2017). The sentence similarity is then calculated as the cosine similarity between 
the two sentence embedding vectors. 

Among various types of word embeddings, only word2vec is tested by Štajner et al. (2018). 
However, it was not reported as the best one in their experiments (the best one is the character 
trigram in their task). 
Sentence-embedding Similarity 

Another way to generate the sentence-embedding is to adopt BERT to transform all its 
associated token-embeddings into it. We test two methods of obtaining sentence representation 
via BERT. First, we take the [CLS] token from the BERT to represent the whole sentence. 
Alternatively, we use Sentence-BERT (Reimers & Gurevych, 2019), which is an alternative 
method of obtaining sentence representation from BERT-type models, suggested as a better 
alternative for directly adopting [CLS] token embedding. We use Sentence-BERT to separately 
obtain a single embedding for each sentence in the pair. The sentence similarity is then 
calculated between two obtained sentence embedding vectors. 
BERTScore 

Last, we can directly generate the desired similarity value among two sentences by adopting the 
BERTScore (Zhang et al., 2020) approach, which is originally developed as an automatic 
evaluation metric for comparing various text generation systems. This approach first uses BERT 
to obtain the word embeddings of all input tokens. The pairwise similarity is then calculated for 
each possible token pair. Afterward, for each token from the first input sequence (i.e., the 
sentence from the “original” paragraph), BERTScore finds its matching token in the second 
sequence (i.e., the sentence from the “paraphrased” paragraph) via greedy search. Last, it 
calculates both precision and recall based on the matching result. 

As BERTScore is designed to evaluate the similarity between the ground truth and the 
generated text, we thought it should be also suitable for measuring the sentence similarity for 
our task. Typically, BERTScore will report precision, recall, and F1-score at the same time. We 
take each of these values to represent a specific sentence pair similarity measure; and we refer 
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to them as BERTprec, BERTrec, and BERTf1, respectively. 

2.3 Similarity Score Thresholding 
Regardless of the selected combination of search mechanism and similarity measure, we 
additionally impose a similarity score thresholding on the aligned sentences. In the final stage 
of the alignment procedure, we filter out sentence pairs that have similarity values below the 
experimentally selected threshold. This helps us further improve the overall test-set results and 
allows for a precision-recall trade-off if desired. 

3. Experiments 

Figure 3 shows the operation flow adopted in the experiments. We first take a pair of 
paraphrased paragraphs as input, clean the text in each paragraph, and split it into individual 
sentences. Then, we use the sentence alignment module with the selected search mechanism 
and similarity measure to generate the desired sentence alignments. Those one-to-one sentence 
alignments are then extracted and output as the answer. 

 
Figure 3. Operation flow for obtaining one-to-one sentence alignment within 

paraphrased paragraph pairs. Figure adopted from Smolka et al. (2022). 

The following subsections give details of the experiment setting and results. 

3.1 Dataset 
We randomly sampled 400 paragraph pairs from the Webis-CPC-11 corpus (out of which 7 
were found to be incorrectly marked as paraphrases, and removed from the evaluation data). 
The non-paraphrased pairs are excluded from the development and test data. However, we 
reserve them for additional experiments where we test methods for automatically detecting such 
undesired input from our data. 

To evaluate the performance, we manually annotate the 400 paragraph pairs randomly 
sampled from the Webis-CPC-11 corpus. The annotation process consists of several stages: (1) 
Paragraph pre-processing, which is performed automatically and serves to clean the data and 
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split each paragraph into its associated sentences; (2) Sentence alignment (marking both one-
to-one and one-to-many alignment configurations), in which we manually match the sentences 
that have similar meanings. 

After the paragraph pre-processing stage, the annotator receives two sets of sentences for 
each paragraph pair and is requested to align sentences between them (including both one-to-
one and one-to-many mappings). The result of the manual annotation is a dataset in which each 
paraphrased paragraph pair is associated with the aligned sentence pairs between them. If the 
sample contains non-paraphrased paragraphs, the annotator is asked to simply mark them 
without adding alignment annotation. 

As all tested similarity measures are model-agnostic, we do not require a training set. 
Therefore, we split all the aligned paragraph pairs (i.e., excluding those non-paraphrased pairs) 
into the development set and the test set with a 1:7 ratio. As a result, we end up with 48 
paragraph pairs in the development set and 345 paragraph pairs in the test set. We use the 
development set for selecting hyper-parameters such as similarity cutting threshold and 
alignment type probabilities for the Gale-Church algorithm (Gale & Church, 1993). 

Table 1. Dataset Statistics (without non-paraphrase cases). #Min-#Max specifies the 
range in paragraph range row. Also, 1-1 indicates the one-to-one mapping, 
2-1 (1-2) indicates two-to-one and one-to-two mapping, and so on. 

 all dev test 

#input paragraphs 393 48 345 

#input non-paraphrased pairs (dataset errors) 7 2 5 

avg. paragraph length (#sentences) 2.3 2.4 2.3 

avg. sentence length (#tokens) 20.9 19.3 21.1 

paragraph range (# sentences) 1-7 1-6 1-7 

% of alignment types 

all 822 
(100%) 

87 
(100%) 

735 
(100%) 

1-1 
(ground truth) 

633 
(77%) 

67 
(77%) 

566 
(77%) 

2-1 (1-2) 132 
(16%) 

16 
(18%) 

118 
(16%) 

2-2 8 
(1%) 

1 
(1%) 

7 
(1%) 

Other 
(2-3,1-4,etc.) 

49 
(6%) 

4 
(4%) 

45 
(6%) 
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Table 1 gives the associated dataset statistics. Within them, 566 1-to-1 paraphrased 
sentence pairs (77% among all aligned passage pairs) exist in the test set. This set of 1-to-1 
sentence pairs (i.e., sentential paraphrases) is the desired output in our task, and thus becomes 
the ground truth for our evaluation. 

3.2 Pre-processing 
Because the Webis-CPC dataset only contains un-segmented paragraphs, it must be first 
converted into a collection of sentences. We use an off-the-shelf sentence segmenter (Qi et al., 
2020) to split each paragraph into sentences. The output is thus two sets of sentences, one for 
each of the paragraphs. 

3.3 Experimental Setting 
For our baseline, we re-implement the SOTA approach proposed by Štajner et al. (2018), as 
there is no easily applicable code released by the authors. Therefore, we follow the descriptions 
in the original paper to implement the ngram character similarity. Our implementation has not 
been tested on the data adopted in the work of Štajner et al. (2018) because it lacks the 
annotations that are necessary for automatic evaluation. Furthermore, the original work 
introducing SOTA character trigram metrics used only human evaluation, which makes a direct 
comparison of our method with their results impossible. 

When it comes to the pretrained models used for conducting the embedding-based 
similarity calculations, we select the models based on their open-source availability. For 
example, for getting the BERT word-averaging and [CLS]-token representation, we use the 
BERT-base model (Devlin et al., 2019). When it comes to Sentence-BERT, three different 
pretrained models were tested, including BERT-base (Devlin et al., 2019; abbreviated as 
SBERTbert), ALBERT-mini (Lan et al., 2020; abbreviated as SBERTalbert), and MiniLM 
(Wang et al., 2020; abbreviated as SBERTmini). The training data for those three 
SentenceBERT models varied and depended on the original open-source model released. 2 
Among them, SBERTbert was trained with various Natural Language Inference data sets; 
SBERTalbert and SBERTmini were trained on various paraphrasing datasets.3 Finally, the 
BERTScore open-source implementation uses ROBERTA-Large (Liu et al., 2019). 

3.4 Various Experiments 
In our experiments, we test various combinations of the two alignment strategies with different 
similarity measures. We take precision, recall, and F1-score as the evaluation metrics. Moreover, 

 
2 https://huggingface.co/sentence-transformers 
3 The list of specific datasets used was not published by the open-source authors. 
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for each set of results, we apply the McNemar test (Dietterich, 1998) to check whether the 
performance improvement is statistically significant (with p≤0.05 as the significance test 
threshold). 

In our experiments, we test similarity measures based on: (1) Unit-Overlap-Ratio, 
including character ngram overlap-ratio with n ranging from 1 to 5 (NGRAM), and token 
overlap-ratio calculated with either token strings (TOKENstring) or token synonyms 
(TOKENsyn); (2) Sentence-Vector-Similarity, including (a) word-embedding-based 
similarity measures calculated with word2vec (W2V), Glove (GLOVE) and BERTbase 
(BERTword) embeddings; (b) sentence-embedding-based similarity measures which consist 
of: (i) using [CLS] token yielded by BERTbase model (BERTcls), and (ii) Sentence-BERT 
embeddings with three different pretraining models (SBERTbert, SBERTalbert, and 
SBERTmini); (c) BERTScore with precision (BERTprec), recall (BERTrec), and F1-score 
(BERTf1). 

3.4.1 Sentence Alignment Results on the Full Dataset 
Tables 2-4 compare various similarity measures under the Best Match (Uni- and Bi-directional, 
separately) strategy and the Sequence Match strategy, respectively. For each measure, we only 
report the results with the best threshold value, which is selected on the development set based 
on the F1 value. The threshold for each specific similarity measure is different and is noted in 
the corresponding table. Measures that outperform the character trigram baseline in a significant 
manner are marked with the asterisk *. 

Overall, comparing the best result of each approach, the sequence match approach (with 
the best F1-score equaling 88.8%) outperforms both best match approaches (the best F1-score 
of 85.1% is from the bi-directional mode). We conjecture that the sequence match performs the 
best as it additionally considers the adjacency and dependency information within sentences 
during matching. 

Moreover, the Uni-directional Best Match approach performed the worst (only with 82.5% 
best F1) as expected. Since our data is symmetric, the matching results would be more reliable 
if the alignment is considered from both directions. 

Furthermore, the best similarity measure varies under different search mechanisms. In the 
sequence match approach, three BERT-type measures (i.e., SBERTbert (88.8% F1), BERTrec 
(88.7% F1), and BERTf1 (88.7% F1)) significantly outperform the baseline. The 
SentenceBERT measure performs best, surpassing the character-trigram baseline method by 
1.9% (88.8% vs. 86.9%) because it is trained to encode the overall sentence meaning, not the 
specific meaning of individual tokens, which fits our task well. Similarly, BERTScore also 
delivers good results because it is directly trained to measure the similarity between two 
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sequences. 

Table 2. Alignment results by adopting the uni-directional Best Match strategy on the 
full dataset. TH indicates the adopted threshold value. The asterisk * marks 
the measures that outperform NGRAM baseline (n=3) with p ≤ 0.05. Table 
adopted from Smolka et al. (2022). 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1)* 77.8 82.2 79.9 0.3 

NGRAM(n=2)* 77.8 82.2 79.9 0.3 

NGRAM(n=3) 79.9 72.5 76.1 0.3 

NGRAM(n=4)* 77.8 82.2 79.9 0.3 

NGRAM(n=5)* 77.8 82.2 79.9 0.3 

TOKENstring* 83.7 73.1 78.1 0.2 

TOKENsyn 77.1 71.5 74.2 0.1 

W2V 79.7 74.5 77.0 0.8 

GLOVE 73.5 81.2 77.1 0.95 

BERTword* 78.5 87.0 82.5 0.75 

BERTcls 81.9 67.9 74.3 0.9 

SBERTbert 75.2 90.8 82.3 0.6 

SBERTalbert 82.9 70.7 76.9 0.35 

SBERTmini* 78.4 85.2 81.6 0.6 

BERTprec* 86.5 72.9 79.1 0.9 

BERTrec* 83.5 74.9 80.4 0.9 

BERTf1* 86.8 74.9 80.4 0.9 

On the other hand, in the bi-directional best match approach, the best result is again 
obtained by the Sentence-BERT measure (SBERTmini) with the best F1-score 85.1%, 
significantly outperforming the character ngram similarity measure at 82.7%. Also, both 
SBERTalbert and BERTf1 measures outperform the baseline with p<0.06. We believe that the 
above reasons given for the sequence match approach also apply here. 
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Table 3. Alignment results by adopting bi-directional Best Match strategy on full 
dataset. TH indicates the adopted threshold value. The asterisk * marks the 
measures that outperform NGRAM baseline (n=3) with p ≤ 0.05. Table 
adopted from Smolka et al. (2022). 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1) 80.5 81.8 81.1 0.3 

NGRAM(n=2) 80.5 81.8 81.1 0.3 

NGRAM(n=3) 78.9 87.0 82.7 0.1 

NGRAM(n=4) 80.5 81.8 81.1 0.3 

NGRAM(n=5) 80.5 81.8 81.1 0.3 

TOKENstring 84.7 73.1 78.5 0.2 

TOKENsyn 78.6 81.8 80.2 0.05 

W2V 81.1 87.6 84.2 0.6 

GLOVE 79.7 78.0 78.8 0.95 

BERTword 82.3 86.4 84.3 0.75 

BERTcls 86.2 66.5 75.1 0.9 

SBERTbert 79.1 88.6 83.6 0.6 

SBERTalbert 80.6 89.8 84.9 0.25 

SBERTmini* 80.7 90.2 85.1 0.25 

BERTprec 80.9 88.2 84.4 0.85 

BERTrec 79.7 88.2 83.7 0.85 

BERTf1 79.9 90.8 85.0 0.9 

Last, in the uni-directional best match approach, several tested measures significantly 
outperform the baseline (76.1%), including BERTword (82.5%), SBERTbert (82.3%), 
SBERTmini (81.6%), BERTf1(80.4%), NGRAM with n≠3 (79.9%), BERTrec (79.7%), 
BERTprec (79.1%), and TOKENstring (78.1%). The measures that perform best in this search 
mechanism are again mostly those that encode the sentence as a whole, similar to other search 
mechanisms. 
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Table 4. Alignment results by adopting Sequence Match strategy on the full dataset. 
TH indicates the adopted threshold value. The asterisk * marks the measures 
that outperform NGRAM baseline (n=3) with p ≤ 0.05. Table adopted from 
Smolka et al. (2022). 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1) 89.1 83.4 86.1 0.2 

NGRAM(n=2) 89.1 83.4 86.1 0.2 

NGRAM(n=3) 89.7 84.2 86.9 0.1 

NGRAM(n=4) 89.1 83.4 86.1 0.2 

NGRAM(n=5) 89.1 83.4 86.1 0.2 

TOKENstring 92.7 81.6 86.8 0.15 

TOKENsyn 86.2 86.9 86.3 0 

W2V 87.6 87.6 87.6 0.45 

GLOVE 87.3 85.2 86.2 0.9 

BERTword 91.5 82.2 86.6 0.75 

BERTcls 92.3 81.4 86.5 0.85 

SBERTbert* 89.8 87.8 88.8 0.6 

SBERTalbert 91.1 85.8 88.3 0.25 

SBERTmini 87.8 86.8 87.3 0.25 

BERTprec 90.0 86.8 88.4 0.85 

BERTrec* 89.9 87.6 88.7 0.85 

BERTf1* 90.1 87.4 88.7 0.85 

3.4.2 Alignment Results on Sentences with Limited Length 
The above experiments are conducted without limiting the lengths of those input sentences. 
However, in our another study, we have found that it is difficult to extract appropriate lexico-
syntactic patterns from sentences containing more than two clauses, as selecting the desired 
candidates will become much more confusing. As a result, the precision rate of extracting high-
quality patterns would be lower. To ensure the quality of extracted templates, we thus conducted 
an additional set of experiments on those input sentences with limited length. Below, we first 
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describe how to find out a reasonable way to filter out those sentences that would be too 
complicated/long for our purpose. Afterward, we repeat the above experiments on this new 
dataset to check if it would significantly change the alignment performance. 
3.4.2.1 Finding the Appropriate Criterion to Filter out Long Sentences 

To limit the degree of confusion in selecting the desired candidates, we would like to only use 
sentences with no more than two clauses to extract the desired templates. To automatically filter 
out those sentence pairs that might contain more than two clauses, we need to first find out a 
suitable criterion. For simplicity, we opt to use sentence length as the filtering criterion, because 
this value not only is highly correlated with the number of associated clauses but also could be 
easily measured. 

 
Figure 4. Finding the upper-limit sentence length from smoothed probability 

distributions (X-axis: sentence length in tokens). The blue curve is for the 
sentences with maximum two clauses, and the green curve is for the cases 
with more than two clauses. The red vertical line marks the intersection 
between the two distributions. 

Figure 4 illustrates how we find the upper-limit sentence length. We first manually 
generate two smoothed probability distributions in Figure 4: The blue curve is for the sentences 
with two clauses at most (which we consider appropriate for our task), and the green curve is 
for the cases with more than two clauses (which we consider are too difficult). Those two 
smoothed probability distributions are constructed from 100 sentences in each group, which are 
randomly selected from the Webis-CPC-11 dataset and then manually checked to fit this target 
number. The smoothed probability distributions are calculated using kernel density estimation 
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(Rosenblatt, 1956). We then find the integer value that is closest to the intersection point 
between the two distributions (indicated by the red vertical line in Figure 4), which is 22. This 
value indicates that if the sentence has a length below it, it is more likely to belong to the 
“appropriate” category. On the contrary, a sentence is more likely to be too difficult for our 
purpose, if its length is above this value. 

Table 5 gives the details of the newly constructed dataset. The main difference from the 
full dataset used in the previous experiments lies in the golden answers. In the new dataset, the 
benchmark consists of only 367 aligned sentence pairs that are shorter than 22 tokens (versus 
633 sentence pairs in the original dataset, Table 1). 

Table 5. Statistics for the dataset that considers sentence-length constraint. #Min-
#Max specifies the range in “paragraph range” row. Also, 1-1 indicates the 
one-to-one mapping, 2-1 (1-2) indicates two-to-one and one-to-two 
mapping, and so on. 

 all dev test 

#input paragraphs 393 48 345 

#input non-paraphrased pairs (dataset errors) 7 2 5 

avg. paragraph length (#sentences) 2.3 2.4 2.3 

avg. sentence length (#tokens) 20.9 19.3 21.1 

paragraph range (# sentences) 1-7 1-6 1-7 

% of alignment types 

all 822 
(100%) 

87 
(100%) 

735 
(100%) 

1-1 (all) 633 
(77%) 

67 
(77%) 

566 
(77%) 

2-1 (1-2) 132 
(16%) 

16 
(18%) 

118 
(16%) 

2-2 8 
(1%) 

1 
(1%) 

7 
(1%) 

other 
(2-3,1-4,etc.) 

49 
(6%) 

4 
(4%) 

45 
(6%) 

Evaluation 
Benchmark 

1-1 (<22 tokens, golden 
answers) 

367 
(45%) 

50 
(57%) 

317 
(43%) 

3.4.2.2 Experimental Results on Sentences with Limited Length 

Tables 6-8 compare all similarity measures under the Best Match strategy (Uni- and Bi-
directional, separately) and the Sequence Match strategy, respectively for the dataset containing 
only sentences shorter than 22 tokens. We follow the same scheme adopted in the previous 
experiments to report the new results. 
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Table 6. Alignment results on sentences shorter than 22 tokens for the uni-directional 
Best Match strategy. TH indicates the threshold value. The asterisk * marks 
the metrics that outperforms NGRAM baseline (n=3) with p ≤ 0.05. 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1)* 73.3 77.9 75.5 0.3 

NGRAM(n=2)* 73.3 77.9 75.5 0.3 

NGRAM(n=3) 74.4 65.9 69.6 0.3 

NGRAM(n=4)* 73.3 77.9 75.5 0.3 

NGRAM(n=5)* 73.3 77.9 75.5 0.3 

TOKENstring* 77.7 70.3 73.8 0.2 

TOKENsyn 71.3 65.9 68.5 0.1 

W2V 74.6 65.9 70.0 0.8 

GLOVE 65.7 74.4 69.8 0.95 

BERTword* 73.9 83.9 78.6 0.75 

BERTcls 78.2 66.9 72.1 0.9 

SBERTbert* 70.3 90.2 79.0 0.6 

SBERTalbert 76.9 70.3 73.5 0.35 

SBERTmini* 74.2 85.2 79.3 0.35 

BERTprec* 77.6 70.0 74.1 0.9 

BERTrec* 81.5 73.8 77.5 0.9 

BERTf1* 80.9 72.2 76.3 0.9 

Overall, the performances (in terms of F1 scores) on those length-limited sentences are 
lower than that on the full dataset (Table 2-4). The drop in F1 score ranges from 2.4% (bi-
directional Best Match; 85.1% vs. 82.7%) to 6.1% (Sequence Match; 88.8% vs. 82.7%). One 
reason for causing the drops is that it implicitly removes the simplest alignment cases after 
filtering out those longer sentences, where the whole paragraph just consists of one single 
sentence. Another reason is that shorter sentences are easier to be mistakenly linked because 
they have less distinctive tokens. Detailed explanation will be delayed to the discussion section 
(Section 5). 
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Table 7. Alignment results on sentences shorter than 22 tokens for the bi-directional 
Best Match strategy. TH indicates the threshold value. The asterisk * marks 
the metrics that outperforms NGRAM baseline (n=3) with p ≤ 0.05. 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1) 77.7 77.9 77.8 0.3 

NGRAM(n=2) 77.7 77.9 77.8 0.3 

NGRAM(n=3) 74.7 83.9 79.0 0.1 

NGRAM(n=4) 77.7 77.9 77.8 0.3 

NGRAM(n=5) 77.7 77.9 77.8 0.3 

TOKENstring 79.4 70.3 74.6 0.2 

TOKENsyn 73.6 76.3 74.9 0.05 

W2V* 78.4 84.5 81.3 0.6 

GLOVE 72.9 68.8 70.8 0.95 

BERTword* 78.6 83.3 80.9 0.75 

BERTcls 83.7 64.7 73.0 0.9 

SBERTbert* 75.0 87.1 80.6 0.6 

SBERTalbert* 77.1 89.3 82.7 0.25 

SBERTmini* 76.0 89.0 82.0 0.25 

BERTprec* 75.7 86.4 80.7 0.85 

BERTrec* 76.2 82.0 81.3 0.85 

BERTf1 81.8 72.2 76.7 0.9 

Unlike in the experiments on the full dataset, two of the alignment strategies – Bi-
directional Best Match and Sequence Match obtain the same F1 score (82.7%) with the 
SBERTalbert metric. This might indicate that the adjacency and dependency information used 
in Sequence Match (but not Best Match) is not as important for aligning sentences with limited 
length. 
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Table 8. Alignment results on sentences shorter than 22 tokens for the Sequence 
Match Best Match strategy. TH indicates the threshold value. The asterisk * 
marks the metrics that outperforms NGRAM baseline (n=3) with p ≤ 0.05. 

measure 
% on the test set 

Best TH 
prec rec F1 

NGRAM(n=1) 76.5 82.3 79.3 0.2 

NGRAM(n=2) 76.5 82.3 79.3 0.2 

NGRAM(n=3) 74.7 83.9 79.0 0.1 

NGRAM(n=4) 76.5 82.3 79.3 0.2 

NGRAM(n=5) 76.5 82.3 79.3 0.2 

TOKENstring 76.5 83.3 79.8 0.15 

TOKENsyn 73.4 78.2 75.7 0 

W2V* 78.2 84.9 81.4 0.45 

GLOVE 72.8 72.6 72.7 0.9 

BERTword* 78.6 83.3 80.9 0.75 

BERTcls 77.5 78.2 75.7 0.85 

SBERTbert* 75.0 87.1 80.6 0.6 

SBERTalbert* 77.1 89.3 82.7 0.25 

SBERTmini* 76.0 89.0 82.0 0.25 

BERTprec* 75.7 86.4 80.7 0.85 

BERTrec 74.9 84.5 79.4 0.85 

BERTf1* 76.1 90.5 82.7 0.85 

Furthermore, just as on the full dataset, the best similarity measure varies under different 
search mechanisms. In the sequence match approach, two BERT-type measures (i.e., all 
SentenceBERT variants with the best being BERTalbert (82.7% F1 score)), and two of 
BERTScore variants (i.e., BERTprec with 80.7% F1 score and BERTf1 with 82.7% F1 score) 
and word2vec metric (i.e., W2V, 81.4% F1 score) significantly outperform the baseline. The 
SentenceBERT and BERTScore measure performs best, surpassing the character-trigram 
baseline method by 3.7% (82.7% vs. 79.0%). 

Similarly, in the bi-directional best match approach, the best result is again obtained by 
the SentenceBERT measure (i.e., SBERTalbert) with the best F1-score of 82.7%, significantly 
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outperforming the character ngram similarity measure at 79.0%. This confirms the observation 
from previous experiments regarding the high suitability of sentence-embedding-based 
approaches in our task. 

Last, in the uni-directional best match approach, several tested measures significantly 
outperform the baseline (69.6%), including SBERTmini (79.3%), SBERTbert (79.0%), 
BERTword (78.6%), BERTrec (77.5%), BERTf1(76.3%), NGRAM with n≠3 (75.5%), 
BERTprec (74.1%) and TOKENstring (73.8%). The measures that perform best in this search 
mechanism are again mostly those that encode the sentence as a whole, similar to other search 
mechanisms. 

In comparison with the alignment results obtained from those sentences without length 
limitation, the F1-scores measures on length-limited sentences are lower (see the last item in 
Section 5). Although the performance of alignment of sentences with limited length is overall 
lower than on full data, we still prefer to impose the sentence length limitation, because it only 
slightly lowers the alignment performance but will offer considerable benefit while extracting 
the lexico-syntactic templates later. 

3.4.3 Comparison of BERT Word-averaging and [CLS] Token Sentence 
Representation 

Table 9. Comparison of results of BERT word-averaging and BERT [CLS] token-
based similarity metrics on the full dataset. SM indicates Search Mechanism. 
The asterisk * indicates cases where the difference between two measures is 
statistically significant with p ≤ 0.05. 

SM measure 
% on the test set 

prec rec F1 

Sequence 
Search 

BERTword 91.5 82.2 86.6 

BERTcls 92.3 81.4 86.5 

Best Match (uni) 
BERTword* 78.5 87.0 82.5 

BERTcls 81.9 67.9 74.3 

Best Match (bi) 
BERTword* 82.3 86.4 84.3 

BERTcls 86.2 66.5 75.1 

Comparing the performance of the methods using BERTword (i.e., word-averaging of BERT 
token embeddings) and the BERT [CLS] token, we observe that the BERTword achieves better 
performance regardless of the adopted search mechanism. Table 9 and Table 10 show how 
BERTword performs significantly better (p<0.05) than BERTcls regardless of the search 
mechanism for the dataset with sentence length constraint. The BERTword results are up to 
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6.5% higher, depending on the search mechanism (80.9% vs. 75.7% for sequence match; 80.9% 
vs. 73.0%, and 78.6% vs. 72.1% for bi- and uni-directional, respectively). For the full dataset, 
a noticeable difference can be observed for both versions of the Best Match approach with up 
to a 9.2% difference (84.3% vs. 75.1% and 82.5% vs. 74.3% for bi- and uni-directional, 
respectively). This is in line with the observation from Choi et al. (2021), who noted that 
interpreting the [CLS] token embedding as the sentence representation might be inferior to 
combining the individual sub-word embeddings obtained from BERT in some tasks. 

Table 10. Comparison of results of BERT word-averaging and BERT [CLS] token-
based similarity metrics on sentences shorter than 22 tokens. SM indicates 
Search Mechanism. The asterisk * indicates cases where the difference 
between two measures is statistically significant with p ≤ 0.5. 

SM measure 
% on the test set 

prec rec F1 

Sequence 
Search 

BERTword* 78.6 83.3 78.6 

BERTcls 77.5 78.2 77.5 

Best Match (uni) 
BERTword* 73.9 83.9 78.6 

BERTcls 78.2 66.9 72.1 

Best Match (bi) 
BERTword* 78.6 83.3 80.9 

BERTcls 83.7 64.7 73.0 

3.5 Exploring Features for Non-paraphrased Paragraph-pair Detection 
As shown in Table 1, we have found that some of the paragraph pairs we sampled from the 
Webis-CPC-11 were mislabeled as paraphrase-pairs, in which the meaning of the two 
paragraphs is not similar. Figure 5 shows an example of such a non-paraphrased pair, where the 
text fragments in red indicate two different meanings. In one paragraph the character “Sukey” 
is said to have heard about some issues, whereas in the other paragraph it is indicated she has 
no idea about them. In the 400 pairs with the positive labels that we sampled, 7 were not 
paraphrases. 

Although we have excluded those outlier pairs from our previous experiments, they are 
manually detected, which would be too time-consuming to do so for a large corpus. Therefore, 
we would like to check whether it is possible to detect such incorrectly labeled data 
automatically. As the paragraph is just a longer passage in comparison with the sentence, we 
expect that the measures adopted to calculate the sentence similarity could be also applied to 
evaluate the paragraph similarity. We thus further test whether the measures adopted for 
sentence alignment are discriminative enough to filter out those incorrectly annotated paragraph 
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pairs (i.e., non-paraphrased pairs found). 

 
Figure 5. Example of a non-paraphrased paragraph pair (outlier) from the Webis-

CPC-11 dataset. Red marks text fragments with opposite meanings. 

To detect the outliers, we first calculate the paragraph similarity using the same similarity 
measures adopted in the previous experiments, but taking paragraphs, not sentences, as the input. 
We include the following similarity measures in the experiment: (1) based on the unit-overlap-
ratio (including: NGRAM(n=3), TOKENstring, TOKENsyn); based on the sentence-vector-
similarity (including SentenceBERT and BERTScore). We model the similarity values from all 
paraphrased paragraph pairs for each measure with a specific normal distribution and then 
calculate its 0.95 confidence interval to check whether the non-paraphrased paragraphs can be 
detected as outliers outside this interval. 

Table 11 shows the percentage of non-paraphrased pairs that fall below the left boundary 
value of the 0.95 Confidence Interval for each of the adopted similarity measures. The best 
result is achieved using BERTprec, with which we can detect all outlier pairs. This leads to the 
conclusion that it is possible to automatically detect those non-paraphrased paragraph-pairs by 
using BERTScore as a similarity measure.  
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Table 11. Results of filtering out non-paraphrased paragraph pairs based on  
the 0.95 confidence interval. Mean is the mean similarity value for  
all (393) paraphrased paragraph pairs; L-CI is the left boundary of  
the Confidence Interval, and #pairs is the number of non-paraphrased 
pairs that fall outside the confidence interval (out of 7). Results with p ≤ 
0.05 are marked with the asterisk *. Table adopted from Smolka et al. 
(2022). 

measure mean  L-CI (0.95) % pairs  

NGRAM(n=3) 0.547 0.530 71% 

TOKENstring 0.221 0.214 57% 

TOKENsyn 0.141 0.136 57% 

SBERTbert 0.541 0.522 43% 

SBERTalbert 0.411 0.391 43% 

SBERTmini* 0.339 0.321 86% 

BERTprec* 0.914 0.911 100% 

BERTrec 0.917 0.914 71% 

BERTf1* 0.915 0.913 71% 

4. Error Analysis 

We analyzed 50 errors generated by our best approach (i.e., Sequence Match with SBERTmini), 
and categorized them based on their associated error sources: (1) mistaking 1-n mapping for 1-
1 (46%); (2) associated with incorrect sentence boundary (26%), in which the sentences are split 
incorrectly before conducting alignment (e.g., a sentence is incorrectly split into two sequences 
by the sentence segmenter); (3) paraphrased sentences take different sequence-orders within 
two given paragraphs (16%); (4) others (12%), of which it is difficult to attribute each error to 
a specific reason. 

Table 12 shows an example of the first error category, which incorrectly marks a 1-n 
alignment as 1-1. The source of this error is likely due to the following two reasons. First, those 
proposed similarity measures are still incapable of truly reflecting the semantic similarity 
between two sentences when they are paraphrased in an abstract way; as a result, they might 
incorrectly convert a golden 1-n mapping into a 1-1 mapping. Second, because the alignment is 
selected based on the sentence similarity and the probability of each alignment type is estimated 
from the development set, the adopted model has a preference for extracting 1-1 alignments as 
they are most common in the dataset (cf. Table 1). 
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Table 12. An example which mis-interprets a one-to-many relationship as a 1-1 
alignment. Gold sentence alignments (i.e., pairs “a”, “b”) are correctly 
extracted; "x" is incorrectly extracted and “0” is an annotated 1-n 
alignment which we do not want to extract. 

 PARAGRAPH #1 PARAGRAPH #2 

MODEL INPUT (FULL 
PARAGRAPHS) 

Thad, of course. And, Bill, 
we're going to get him, 
sooner or later. Mr. Hooper 
won't want to stand this sort of 
thing forever. I've got a hunch 
that we're not through with 
that game yet. 

Naturally, Thad and also 
Bill, whom we'll get after 
a while. Mr. Hooper won't 
let this go on for long. I'm 
guessing we won't be 
done for some time. 

ALIGNED SENTENCES 
(GOLDEN ANSWER) 

0 
Thad, of course. And, Bill, 
we're going to get him, sooner 
or later. 

Naturally, Thad and also 
Bill, whom we'll get after 
a while 

a 
Mr. Hooper won't want to 
stand this sort of thing 
forever. 

Mr. Hooper won't let this 
go on for long. 

b I've got a hunch that we're not 
through with that game yet. 

I'm guessing we won't be 
done for some time. 

MODEL ANSWER 

x And, Bill, we're going to get 
him, sooner or later. 

Naturally, Thad and also 
Bill, whom we'll get after 
a while. 

a 
Mr. Hooper won't want to 
stand this sort of thing 
forever. 

Mr. Hooper won't let this 
go on for long. 

b I've got a hunch that we're not 
through with that game yet. 

I'm guessing we won't be 
done for some time. 

The second error category (i.e., with incorrect sentence boundary) occurs when the pre-
processing module incorrectly split the sentences within one of the input paragraphs. Finally, 
the last type of error is caused by the sequence search mechanism, which assumes all 
paraphrased passage pairs follow the same relative order within each paragraph. If this 
assumption is violated in the given paragraph pair, it will always return an incorrect answer. 

5. Discussion 

Based on our results, we get the following observations: 

•  Among various sentence alignment strategies, Sequence Match tends to give the best and most 
consistent results across all our experiments. The advantage of Sequence Match is that it 
employs dynamic programming which makes it faster than the greedy approaches. It also 
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performs well where the adjacency and dependency information between sentences is relevant 
to the matching. However, it will not perform well when the sentences are in a different order 
in the two paragraphs, in which case using the Best Match strategy would be preferable. 
Furthermore, the bi-directional Best Match shows much better performance than the uni-
directional approach on both datasets we use, which can be explained by the symmetry in our 
data, as described earlier in the introduction section. 

•   In general, the measures that encode the sentence directly tend to perform better than those 
that are based on individual token representations (either unit-overlap or token-embedding-
average). The only exception is the approach using the BERT [CLS] token. We believe it might 
be because the [CLS] token is not explicitly trained to condense a long text sequence into a 
vector, unlike SentenceBERT and BERTScore which are created specifically for doing so. 

•  The method using averaged word vectors from BERT outperforms the method using the [CLS] 
token in our task. The inferior performance of the method with [CLS] token representations 
might be due to that the [CLS] token is trained on a much smaller amount of data; in contrast, 
those individual token embeddings are trained from a much larger dataset. 

•  Noticeably, the best thresholds of those non-embedding methods tend to be much lower than 
those of the measures that utilize neural embeddings. We conjecture this is because the neural 
models estimate similarity based on soft/fuzzy matching (which would result lower thresholds), 
while string-based methods use hard/strict matching (which would result higher thresholds, as 
it cannot distinguish the soft matching case from the un-matched case). 

•  Finally, we have discovered that when the additional sentence length limitation is imposed, 
the performance drops across all approaches, with the biggest difference for the Sequence 
Matching approach. One possible explanation is that shorter sentences are easier to be 
mistakenly linked because they have less distinctive tokens (e.g., when comparing short 
sentences like “John Walker went.” and “John Walker came.”, the similarity between them will 
be always high because there is only one distinguishing token; however, it would be a less 
serious issue for the cases with longer sentences). Another reason might be that the sentence 
length limitation implicitly removes the trivial cases from the dataset, i.e., those cases where 
the whole paragraph only contains a single long sentence that will be automatically mapped to 
its corresponding paragraph (and forms a 1-1 mapping). Such cases are more likely to appear 
in the full dataset, which would make the overall result higher on this dataset. 

6. Conclusions 

We have presented the first comparison among various model-agnostic similarity measures used 
for aligning sentences among paraphrased paragraphs. For most cases, we find that embedding-
based similarity measures outperform the string-based approaches (including the previous 
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SOTA character trigram approach tested on the TS dataset), and sentence-embedding-based 
methods are preferable to the word-embedding-based methods for most search mechanisms 
except the uni-directional greedy matching. 

Additionally, our results have shown that in calculating the similarity for sentence 
alignment, word vector averaging is better than adopting the [CLS] token when retrieving a 
representation of a whole sentence from a BERT-based model. 
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