
 

Computational Linguistics and Chinese Language Processing 

Vol. 15, No. 3-4, September/December 2010, pp. 219-236                        219 

© The Association for Computational Linguistics and Chinese Language Processing 

Discovering Correction Rules for Auto Editing 

An-Ta Huang∗, Tsung-Ting Kuo∗, Ying-Chun Lai+, and Shou-De Lin∗ 

Abstract 

This paper describes a framework that extracts effective correction rules from a 
sentence-aligned corpus and shows a practical application: auto-editing using the 
discovered rules. The framework exploits the methodology of finding the 
Levenshtein distance between sentences to identify the key parts of the rules and 
uses the editing corpus to filter, condense, and refine the rules. We have produced 
the rule candidates of such form, A  B, where A stands for the erroneous pattern 
and B for the correct pattern. 

The developed framework is language independent; therefore, it can be applied to 
other languages. The evaluation of the discovered rules reveals that 67.2% of the 
top 1500 ranked rules are annotated as correct or mostly correct by experts. Based 
on the rules, we have developed an online auto-editing system for demonstration at 
http://ppt.cc/02yY. 

Keywords: Edit Distance, Erroneous Pattern, Correction Rrules, Auto Editing 

1. Introduction 

Nowadays, people write blogs, diaries, and reports not only in their native language but 
sometimes in a language they are not that familiar with. During the process of writing, 
second/foreign language learners might make some errors, such as in spelling, grammar, and 
lexical usage. Therefore, how to provide editorial assistance automatically and effectively has 
become an important and practical research issue for NLP (Natural Language Processing) 
researchers. For second/foreign language learners, providing instant responses to their writing, 
indicating which part might be incorrect, and offering auto-editing suggestions for them to 
choose from would be beneficial for the improvement of their writing and other aspects of 
language development. 

Editing plays an important part in language learning. It can be classified into human 

                                                       
∗ Department of Computer Science and Information Engineering, National Taiwan University 
 E-mail: r97922137@ntu.edu.tw; d97944007@csie.ntu.edu.tw; sdlin@csie.ntu.edu.tw 
+ School of Applied Foreign Languages, Chung-Shan Medical University 
 E-mail: yingchun@csmu.edu.tw 



 

 

220                                                        An-Ta Huang et al. 

editing and machine editing. Human editing has some limitations. Human editing is inefficient 
when the size of the edited articles becomes large, and it is inconvenient sometimes for people 
who need this service for their daily documents, like diaries, letters, and emails. Besides, 
human editing involves subjective opinions, which are different from the machine editing 
strategy that relies mostly on the objective empirical outcomes. 

Despite the growing demand of editorial assistance tools, the existing ones still have 
considerable room for improvement. For example, the grammar checker provided by 
Microsoft Word has known deficiencies of being language dependent and covering only a 
small portion of errors without explicitly revealing the correction mechanism. 

Given the importance of the need to develop editing tools, a new editing system is 
proposed. The current research demonstrates an auto-editing system based on the correction 
rules mined from online editing websites. In this paper, we focus on two research goals. First, 
we aim to design a strategy that identifies effective rules automatically and efficiently from 
editing databases. Second, we aim to design an auto-editing system based on the discovered 
rules. 

Our method is language independent; therefore, it can be applied easily to other 
languages. Our evaluation reveals that, among the top 1500 rules the system found, 67.2% of 
them are regarded as correct or mostly correct. 

The remainder of the paper is organized as follows. Section 2 describes the related work 
on detecting erroneous patterns. Section 3 lays out our methodology. Section 4 describes the 
experiment and our demo system. Section 5 concludes our study. 

2. Related Works 

Previous approaches can be classified into two categories. The first category detects erroneous 
patterns based on rules, and the second category makes use of statistical techniques for such a 
purpose. 

2.1 Knowledge-Based Method 
Some methods detecting erroneous patterns based on the manually created rules are proven to 
be effective in detecting grammar errors (Heidorn, 2000). Michaud, McCoy, & Pennington 
(2000) developed a system, including an error identification model and response generation 
model, using knowledge bases that cover general information about analyzing grammar 
structure and specific information of a user’s learning history. Also, Dan, Flickinger, Oepen, 
Walsh, & Baldwin (2004) presented a tutorial system based on computational grammar 
augmented with mal-rules for analysis, error diagnosis, and semantics-centered generation of 
correct forms. Nevertheless, the manually designed rules generally consume labor and time, 



 

 

                 Discovering Correction Rules for Auto Editing                 221 

along with requiring language experts, which limit the generalization capability of such 
methods. Furthermore, manually designed rules can hardly be applied to different languages. 

2.2 Statistical Techniques 
As discussed in Section 2.1, rule-based methods have some apparent shortcomings. Rather 
than asking experts to annotate a corpus, some researchers have proposed statistical models to 
identify erroneous patterns. An unsupervised method to detect grammatical errors by inferring 
negative evidence reached 80% precision and 20% recall (Chodorow & Leacock, 2000). It is 
reported that this system is only effective in recognizing certain grammatical errors and 
detects only about one-fifth as many errors as a human judge does. Some other papers focus 
on detecting particular errors, such as preposition errors (Hermet & Desilets, 2009), 
disagreement on the quantifier and misuse of the noun (Brocket, Dolan, & Gamon, 2006). Sun 
G. et al. (2007) treat the detection of erroneous sentences as a binary classification problem 
and propose a new feature called “Labeled Sequential Patterns” (LSP) for this purpose. This 
feature is compared to the other four features, including two scores produced by a toolkit, 
lexical collocation (Yajuan & Ming, 2004), and function word density. The results show that 
the average accuracy of LSP (79.63%) outperforms the other four features. Furthermore, the 
existence of the time words and function words in a sentence is proven to be important. In this 
way, one can only know whether a sentence is correct or not and would not have a clue about 
how to correct errors. Finally, some researchers have modeled detection of erroneous patterns 
as a statistical machine translation problem treating the erroneous sentences and the correct 
sentences as two different languages. Nevertheless, error correction could be intrinsically 
different from translation and there is no apparent evidence whether the existing machine 
translation techniques are suitable for such purpose (Guihua, Gao, Xiaohua, Chin-Yew, & 
Ming, 2007; Shi & Zhou, 2005). 

Our work is different from the previous ones in two major respects. First, we treat error 
detection as a pattern mining problem to extract effective rules from an editing corpus. Second, 
we focus on designing a language-independent system that avoids using some 
language-specific features, such as not using any contextual, syntactic, or grammatical 
information, in this paper. 

 

 

 

 



 

 

222                                                        An-Ta Huang et al. 

3. Methodology 

3.1 Overview 

 
Figure 1. System Overview 

Figure 1 shows that our framework consists of two parts. It produces some raw rules in the 
first stage and tries to refine them in the next stage. 

3.2 Corpus Description 
We retrieved 310967 parallel pairs of sentences (i.e. each pair consists of one erroneous 
sentence and one correct sentence) from an online-editing website Lang-8 (http://lang-8.com/). 
The website allows people to write diaries in their second/foreign language and the diaries 
(which usually contain some mistakes) would be edited by some volunteer members who are 
native speakers of the corresponding language. The edited part in an article is restricted to a 
single sentence (not cross-sentential). Consequently, we could retrieve the sentence-aligned 
data through crawling the website. 



 

 

                 Discovering Correction Rules for Auto Editing                 223 

In the following sections, we use “Wi” to represent the erroneous sentence of the i-th pair 
of sentence in the corpus and “Ci” to represent the corresponding correct sentence. S+ is 
defined as a collection of all correct sentences in the corpus, while S- is defined as a collection 
of all erroneous sentences. 

3.3 Producing Rules 
The following are some definitions of erroneous and correct patterns, rules, applying rules, 
and frequency of patterns: 

Definition: (erroneous and correct) patterns: A pattern is a series of consecutive words 
(or characters) that belong to a subsequence of a sentence. An erroneous pattern 
represents such a sequence that is believed to be wrong, and a correct pattern is one 
that is believed to be correct. 

Definition: a rule: A rule K can be written as KL => KR. The left-hand side of the arrow, 
KL, is an erroneous pattern and the right-hand side of the arrow, KR, is the correct 
pattern which KL should be transformed to. 

Definition: applying a rule to a sentence: Given a rule K : KL => KR, and a sentence T, 
if KL exist in the T, we replaced every possible place of KL in T to KR. Such a process is 
considered as “applying rule K to a sentence T.” 

Definition: freS+(KL): the occurrence frequency of a pattern KL in corpus S+ 

To discover a rule A  B from the editing corpus, we first had to identify the plausible 
left and right hand side of the rule. This is by no means a trivial task, and the fact that there 
could be various choices of such a rule made the task even more difficult. One intuitive 
method was to compare the word set existing in Wi and Ci and create the patterns using the 
difference among them. Nevertheless, such an intuitive method suffers certain deficiencies, 
such as the ones that appear in the following example. 

Erroneous: “I with him had dinner.” 

Correct: “I had dinner with him.” 

The difference set is an empty set since the order is not considered. It is not clear how 
this difference set can lead to both erroneous and correct patterns. The approach we proposed 
was to exploit the procedure of calculating the word-level Levenshtein distance, which is often 
called editing distance (Levenshtein, 1966). The Levenshtein distance is defined as the 
minimum number of edits needed to transform one string into the other, with the allowable 
edit operations being insertion, deletion, or substitution of a single character (Levenshtein, 
n.d.). Similarly, the edit distance between two sentences can be defined as the minimum 
number of allowable operations required to transform from one of them into the other, given 
each unit of transformation being based on words rather than characters. 



 

 

224                                                        An-Ta Huang et al. 

The insert operation inserts a word X into the erroneous sentence, which implies there is 
a word X that has the potential to be involved in the correct pattern KR for a rule KL KR. 
Similarly, the delete operation removes one word Y from the erroneous sentence to become 
the correct one, and this word Y is likely to be involved in the erroneous pattern KL. Finally, 
when a substitute operation is performed, the word to be replaced should appear in KL while 
the replacing word shall be involved in KR. Here, we argue that the words run through the 
editing-distance process from an erroneous to a correct sentence have a higher chance to be 
involved in the patterns of rules. For example, if we apply an editing distance approach to the 
following sentence pairs, multiple outputs can be acquired, such as the ones shown in Table 1 
and Table 2. Levenshtein distance could calculate the difference between sentences, and we 
believe that rules are based on the differences. 

Erroneous: “I still don't know where is it in the movie.” 

Correct: “I still don't understand where it is in the movie.” 

Based on the two editing-distance results shown in Table 1 and 2, it is possible to obtain 
that the four words {it, is, know, understand} are plausible words to appear in the rule KL  
KR. 

Table 1. One of the editing results for edit distance 

Operation Position Involved word 

Insert 6 It 

Delete 8 It 

Substitute 4 know→understand

Table 2. Another editing result for edit distance 

Operation Position Involved word 

Insert 8 Is 

Delete 6 Is 

Substitute 4 know→understand

For each pair of Wi and Ci, we can collect all of the involved words after producing the 
Levenshtein distance. Figure 2 shows the pseudo code. We exploited a dynamic programming 
approach to improve its efficiency. 



 

 

                 Discovering Correction Rules for Auto Editing                 225 

 
Figure 2. Pseudo code of producing rules 

After applying the modified Levenshtein distance algorithm, it is possible to obtain a set 
of involving words Ri, as shown below. 

{is , it ,understand , know}Ri =  

To form a reasonable pattern, however, the words in set Ri are not sufficient. They 
should be combined with other terms. Ideally, KL and KR must consist of some words from Ri 

and some from the rest of the sentence. Therefore, for each pair of Wi and Ci in the corpus, we 
retrieved consecutive word patterns in which at least one word was from Ri. Based on Ri, the 
following examples are rule candidates. 



 

 

226                                                        An-Ta Huang et al. 

Table 3. Pattern candidates for forming a rule 
Candidates for KL 

(Word length ≤ 4) 
Candidates for KR 

(Word length ≤ 4) 

don’t know 
know where 
where is 
is it 
it in 
still don’t know 
don’t know where 
know where is 
where is it 
is it in 
it in the 
I still don’t know 
still don’t know where 
don’t know where is 
know where is it 
where is it in 
is it in the 
it in the movie 

don’t understand 
understand where 
where it 
it is 
is in 
still don’t understand 
don’t understand where 
understand where it 
where it is 
it is in 
is in the 
I still don’t understand 
still don’t understand where 
don’t understand where it 
understand where it is 
where it is in 
it is in the 
is in the movie 

Next, we matched each plausible candidate for KL to each candidate for KR to form a 
plausible rule(Table 3). For each plausible rule, we then checked its feasibility by applying it 
to Wi to see if the correct sentence Ci could be produced. The infeasible rules would be 
ignored. 

Definition of feasible rule: Given a rule K : KL => KR . In a corpus, if at least one 
erroneous sentence in the corpus can be corrected using K, then K is considered a 
feasible rule. 

3.4 Refining Rules 
So far, we have generated several rules, some of which make sense and some of which might 
not. In this section, we describe how to assess the quality of the rules and how to refine them. 

Table 4. Observation on the frequency 

 Pattern freS+    Pattern freS+ 

Erroneous Went to shopping 10   Erroneous am so exciting 0 

Correct went shopping 205   Correct am so excited 71 



 

 

                 Discovering Correction Rules for Auto Editing                 227 

We believe the erroneous patterns KL should not occur in the correct sentences too 
frequently (otherwise it would have been replaced by the correct one KR); therefore, we 
considered freS+ as a suitable metric to evaluate the quality of a rule. According to the real 
experiment shown in Table 4, the frequency of the erroneous patterns seems to be lower in the 
correct corpus, freS+, compared to the correct ones. 

Next, we condensed the rules according to their freS+. The condensed rule is shorter than 
the original one and is supposed to be more general (i.e. can cover more sentences). For 
example, in the following sentences, the condensed rule is more general and reasonable since 
the subject ‘I’ has nothing to do with the erroneous pattern. 

Erroneous: “I went to shopping and had dinner with my friend yesterday.” 

Correct: “I went shopping and had dinner with my friend yesterday.” 

Rule: “I went to shopping.” => “I went shopping.” 

Condensed Rule: “went to shopping” => “went shopping” 

To obtain the shortest possible rules for auto-editing, we proposed a simple idea to check 
if the left hand side KL could be condensed to a shorter one, without boosting its freS+ 
significantly. If yes, then it implied we had found a shorter erroneous pattern that also 
occurred rarely in the correct corpus. For example, for the erroneous pattern “I am surprised 
at.” Table 5 shows the frequency of each possible subsequence in the correct corpus. 
Apparently “am surprised at” is the most condensed rule that does not occur more than ten 
times in the correct corpus. 

Table 5. An example for condensing a rule 

Sentence 
segment surprised surprised at am surprised am surprised 

at 
I am 

surprised at 

Frequency 985 702 213 10 10 

What follows here is the algorithm for rule condensing. If the frequency of the condensed 
erroneous rule is smaller than an empirically-defined threshold frequency Ncondense, we will 
accept it as a condensed erroneous pattern. Then, we remove the same words from the KR to 
produce the corresponding correct pattern. The condensing process repeats until any of the 
words to be removed in KL do not occur in the KR. The pseudo code of condensing rules is 
shown in Figure 3. 



 

 

228                                                        An-Ta Huang et al. 

 
Figure 3. Pseudo code of condensing rules 

The final step of the refinement is to rank the rules based on their qualities. We proposed 
two plausible strategies to rank the rules. First, it is possible to rank the rules according to 
freS+(KL) from low to high. In other words, a rule is less likely to incorrectly modify 
something right into something wrong if its freS+ is low. Second, it is possible to rank the rules 
according to the number of sentences in the corpus that can be applied using it. The first 
strategy is similar to the definition of precision while the second is closer to the meaning of 
recall. 

4. Experiments 

We set Ncondense as 10 and retrieved 310967 pairs of English sentences from the “Lang-8” as 
our parallel corpus, and the system finally generated 110567 rules. To evaluate the framework, 
four experts were invited to annotate the rules. Then, we demonstrated an auto-editing system 
to show how such rules can be applied. 



 

 

                 Discovering Correction Rules for Auto Editing                 229 

4.1 Evaluation 
We ranked all of the rules according to their freS+,

 and four English majors were invited to 
annotate the top 1500 ranked rules. Each rule was annotated by two persons. The labels for 
annotations were “correct,” “mostly correct,” “mostly wrong,” “wrong,” and “depends on 
context”. Table 6 presents the experimental results and Figure 4 presents the evaluation 
system screenshot. A fair agreement was found between the two annotations, as the kappa 
value equals 0.49835. 

Table 6. The Distribution of annotated results of the top 1500 rules 

 Correct Mostly correct Mostly wrong Wrong Depends on context 

R1~R1500 53.96% 12.96% 0.92% 4.5% 27.66% 

 
Figure 4. Screenshot of Evaluation System 

We also compared our system (using all rules or highly ranked rules), with the other two 
available auto-editing systems, ESL Assistant and Microsoft Word Grammar Checker. The 
highly ranked rules were those with freS+(KL) smaller than 10. We retrieved 30 articles 
randomly from lang-8 that did not appear in our training corpus and examined their correction 
on the website as the gold standard. Table 7 shows the sentence-based recall and precision 
values. 

 

 

 



 

 

230                                                        An-Ta Huang et al. 

Table 7. Evaluation results with 95% confidence 
System Recall Precision 

Our Auto-Editing 
System(All Rules) 20.28%±1.07% 40.16%±0.6% 

Our Auto-Editing System 
(Highly Ranked Rules) 14.28%±0.74% 77.32%±0.55% 

ESL Assistant (Claudia, 
Michael, & Chris, 2009) 18.4%±1.07% 42.36%±0.29% 

Microsoft Word 
Grammar Checker 14.28%±0.72% 27.77%±1.03% 

4.2 Discussion 
Manual analysis of the rules was performed as well. As seen in Table 8, the results show that 
most of the corrections (67% of rules) are about spelling errors, collocation and phrase, and 
agreement of subject and verb. It is also noted that most of the incorrect rules would lead to 
false suggestions and 83% of the rules belonging to “depend on context” category are about 
chunks and phrases. 
Table 8. Manual analysis of rules 
I. Correct & Mostly Correct (67% of Rules) %  
1. Spelling 60% 
2. Collocation and phrase (sequence of words which co-occur more often than would 
be expected by chance 15% 

3. Agreement of subject and verb 7% 
4. Choice of verb tense 5% 
5. Gerund forms and infinitives 2% 
6. Choice of the proper article  1% 
7. Pluralization (irregular noun) 1% 
8. Capitalization (use of capital letter) 1% 
9. Other (use of preposition, word choice, cohesive devices, elliptical forms, 
punctuation, parts of speech, count and noncount nouns…etc.) 8% 

II. Wrong & Mostly Wrong (0.9% of Rules) % 
1. Suggestions of wrong corrections 97% 
2. Errors not to be spotted and corrected 3% 
III. Depends on Context and/or Writers’ Intention (32.1% of Rules) %  
1. Correctness of the chunks/phrases  83% 
2. Verbal and verb tense 5 % 
3. Spelling (more than one possibility) 3% 
4. Word choice 2% 
5. Others (use of preposition, conjunction, cohesive devices, parts of speech…etc.) 7% 



 

 

                 Discovering Correction Rules for Auto Editing                 231 

 
Figure 5. Rule distribution 

Figure 5 shows the rule distribution. Table 9 lists some example rules discovered by our 
system that can hardly be detected and corrected by Microsoft Word 2007 grammar checker. 

Table 9. Example rules discovered by the proposed system 
Example rules 
am worry about => am worried about 
help me to study => help me study 
I will appreciate it => I would appreciate it 
went to shopping => went shopping 
am so exciting => am so excited 
waked => woke 
look forward to read => look forward to reading 
for read my => for reading my 
The street name => The street’s name 
to playing with => to play with 
He promised to me => He promised me 
asked repeat => repeatedly asked 
Have you listen to => Have you listened to 
It’s rains => It’s raining 
I ate a milk => I had milk 
for the long time => for a long time 
don’t cooking => don’t cook 
will success => will succeed 
don’t know what happen => don’t know what happened 



 

 

232                                                        An-Ta Huang et al. 

4.3 Auto-editing System 
We constructed an online, real-time auto-editing system and demonstrated the usefulness of 
our rules, which aimed to provide editorial assistance. We first tried to test whether a part of 
the real-time typing sentence could match the erroneous patterns. If there was a match, the 
chunk would be marked in red, and we applied the correction rule to suggest replacing it with 
the correct pattern. The user(s) was able to click the correct part (marked in green) to tell the 
system the given correction was accepted, and the system automatically made the change. The 
link to our system is: http://mslab.csie.ntu.edu.tw/~kw/new_demo.html. 

4.3.1 Auto Editing 

 
Figure 6. Screenshot of demo system 

Figure 6 is the entire system view. Two kinds of rule sets can be exploited: (1) “Highly-ranked 
Rules” exploits only higher ranked rules and ignores lower-ranked ones; (2) “All Rules” 
utilizes every rule but suffers the risk of utilizing incorrect ones. 



 

 

                 Discovering Correction Rules for Auto Editing                 233 

Figure 7. Screenshot of auto-editing 

In Figure 7 shows one can type sentences in English in edit area. If any of the rules is 
matched, the suggested correction will appear on the above area in green. If the users agree 
with the corrections, they can click on the green word and the sentence will be edited 
accordingly. 

4.3.2 Rules Keyword Search 

 
Figure 8. Screenshot of keywords search in rule database 

On the right hand side of the page (Figure 8), the user can type a keyword to search for the 
related rules. Then, the system would demonstrate all of the discovered rules relevant to this 
keyword. The above screenshot shows the rules relevant to the keyword “course”. 



 

 

234                                                        An-Ta Huang et al. 

4.3.3 User Correction Feedback 
When a user chooses a correction option from editing results, we could assume the rule 
receives one additional endorsement. Such information can be exploited to refine the rules. 
Therefore, we maintain the user feedback and use such feedback to adjust the rank of the rules. 
Highly endorsed rules will be promoted gradually in the ranking. 

5. Conclusion 

In this research, we propose a language-universal framework that is capable of producing 
effective editing rules. The quality of rules can be assessed using the proposed ranking 
strategies. Moreover, we have demonstrated the practical usage of the rules by constructing an 
auto-editing system to provide editorial assistance for language learners. In this paper, we 
demonstrated how we produced correction rules without considering syntactic structure and 
POS (Part-of-Speech). In the future, we would like to make use of both of the features to 
improve the performance of our system. 

References 
Heidorn, E. (2000). Intelligent Writing Assistance. in Robert, D., Hermann, M., & Harold, 

S.(eds.), Handbook of Natural Language Processing. New York: Marcel Dekker. 
Michaud, L., McCoy, K., & Pennington, C. (2000). An Intelligent Tutoring System for Deaf 

Learners of Written English. Proceeding of Fourth International ACM Conference on 
Assistive Technologies, 92-100. 

Dan, E., Flickinger, D., Oepen, S., Walsh, A., & Baldwin, T. (2004). Arboretum: Using a 
precision grammar for grammar checking in call. In Proceedings of the InSTIL/ICALL 
Symposium: NLP and Speech Technologies in Advanced Language Learning Systems. 

Chodorow, M., & Leacock, C. (2000). An Unsupervised Method for Detecting Grammatical 
Errors. Proceedings of the 1st North American chapter of the Association for 
Computational Linguistics conference, 140-147. 

Hermet, M., & Desilets, A. (2009). Using First and Second Language Models to Correct 
Preposition Errors in Second Language Authoring. Proceedings of the Fourth Workshop 
on Innovative Use of NLP for Building Educational Applications, 64-72. 

Brocket, C., Dolan, W., & Gamon, M. (2006). Correcting ESL errors using phrasal SMT 
techniques. Proceedings of the 21st International Conference on Computational 
Linguistics and the 44th annual meeting of the Association for Computational 
Linguistics, 249-256. 

Sun,G., Liu, X., Cong, G., Zhou, M., Xiong, Z., Lin, C. Y., & Lee, J., (2007). Detecting 
Erroneous Sentences Using Automatically Mined Sequential Patterns. In Proceeding of 
the 45th annual meeting of the Association of Computational Linguistics, 81-88. 



 

 

                 Discovering Correction Rules for Auto Editing                 235 

Sun, G., Cong, G., Liu, X., Lin, C.-Y., & Zhou, M. (2007). Mining Sequential Patterns and 
Tree Patterns to Detect Erroneous Sentences. Proceedings of the 22nd national 
conference on Artificial intelligence - Volume 1. 925-930. 

Shi,Y., & Zhou, L. (2005). Error Detection Using Linguistic Features. Proceeding of Human 
Language Technology Conference and Conference on Empirical Methods in Natural 
Language Processing, 41-48. 

Levenshtein, VI. (1966). Binary codes capable of correcting deletions, insertions and reversals. 
Soviet Physics Doklady, 10(8), 707-710. 

Lü, Y., & Zhou, M. (2004). Collocation translation acquisition using monolingual corpora. In 
Proceeding of Association for Computational Linguistics. 

Leacock, C., Gamon, M., & Brockett, C.(2009). User Input and Interactions on Microsoft 
Research ESL Assistant. Proceeding of the Fourth Workshop on Innovative Use of NLP 
for Building Educational Applications, 73-81. 

Levenshtein. (n.d.). Retrieved from the Levenshtein Wiki: 
http://en.wikipedia.org/wiki/Levenshtein_distance 

   



 

 

236                                                        An-Ta Huang et al. 

 


