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Abstract 

This paper presents the algorithms used in a prototypical software system for 
automatic pronunciation assessment of Mandarin Chinese. The system uses forced 
alignment of HMM (Hidden Markov Models) to identify each syllable and the 
corresponding log probability for phoneme assessment, through a ranking-based 
confidence measure. The pitch vector of each syllable is then sent to a GMM 
(Gaussian Mixture Model) for tone recognition and assessment. We also compute 
the similarity of scores for intensity and rhythm between the target and test 
utterances. All four scores for phoneme, tone, intensity, and rhythm are parametric 
functions with certain free parameters. The overall scoring function was then 
formulated as a linear combination of these four scoring functions of phoneme, 
tone, intensity, and rhythm. Since there are both linear and nonlinear parameters 
involved in the overall scoring function, we employ the downhill Simplex search to 
fine-tune these parameters in order to approximate the scoring results obtained 
from a human expert. The experimental results demonstrate that the system can 
give consistent scores that are close to those of a human’s subjective evaluation. 

Keywords: CAPT, CALL, Speech Recognition, Tone Recognition, Speech 
Assessment, GMM, Mandarin Chinese, Downhill Simplex Method, Phoneme, 
Intensity, Rhythm, Forced Alignment. 

1. Introduction 

With the fast-growing power of personal computers and the advances in speech and language 
processing technologies, software systems for CALL (Computer Assisted Language Learning) 
now allow a person to learn a language by interacting solely with computers, especially for 
second language (L2) learning. In general, a CALL system involves testing procedures for 
both the receptive and productive skills of a given subject. To evaluate receptive skills such as 
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reading and listening, the procedure is relative simple, since the evaluation is usually based on 
exams containing questions of single or multiple choices. On the other hand, to evaluate the 
productive skills of speaking or writing, the procedure is relatively difficult and 
time-consuming, since a human expert is usually required to evaluate the speech or writing in 
a subjective and time-consuming manner. With advances in automatic speech recognition, a 
Computer-Assisted Pronunciation Training (CAPT) system can evaluate the pronunciation 
quality using various speech features, and provides high-level feedback (hints for further 
improvement, etc.) to the user. Successful applications of CAPT have been reported in the 
literature [Neumeyer et al. 2000; Kim and Sung 2002; Neri et al. 2003]. 

In this paper, we propose several algorithms for constructing a CAPT system that can 
assess a test utterance in Mandarin Chinese with respect to a target utterance by a native 
speaker. Basically, there are four evaluation criteria based on different acoustic features, as 
explained in the following. 

1. Phoneme: This is based on the log probabilities of the test utterance with respect to the 
acoustic models derived from a large speech corpus for speaker-independent speech 
recognition. Note that the target utterance is not required for this evaluation. 

2. Tone: Each syllable is associated with a tone in Mandarin Chinese. The pronounced 
tone of a syllable can be identified by a tone classifier, and the result is then 
compared with the correct tone for evaluation. Note that we can obtain the correct 
tones from the text of the utterance; hence, the target utterance is not used directly for 
this evaluation. 

3. Intensity: Each syllable has an intensity vector, which is compared to that of the 
corresponding syllable in the target utterance to ensure it has a similar score. 

4. Rhythm: The duration of each syllable and the silence in between are compared to 
those of the target utterance to ensure they have a similar score. 

Each of the scoring functions for the above four criteria involves several nonlinear 
parameters. These four scoring functions are then linearly combined to give a score between 0 
and 100. We then employ a search method that can find optimum values of these parameters 
such that the computed scores can approximate those of a human expert. The experimental 
results demonstrate the feasibility of the proposed approach, which can give consistent results 
when compared with human evaluation. 

The rest of this paper is organized as follows. Section 2 gives a quick overview of related 
work on automatic pronunciation assessment. Section 3 explains the speech-related techniques 
used in our approach, including Viterbi decoding and tone recognition. The method of 
combining weighted scores based on derivative-free optimization is also explained. Section 4 
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describes the GUI of our system. Section 5 demonstrates the experimental results and Section 
6 gives concluding remarks. 

2. Related Work 

In general, a CAPT system can evaluate pronunciation quality using various speech features. 
Moreover, the system is expected to have optimum performance by minimizing the 
discrepancies between the scores from computers and those from a human expert. However, 
most of the reported systems do not take the characteristics of tonal languages into 
consideration. In particular, Mandarin Chinese is a tonal language, and each character is 
associated with one out of five possible tones. The tone of a given character is also 
context-dependent according to tone sandhi [Lee 1997]. Hence, the correct pronunciation of 
the tone of each character in a sentence is the most challenging problem for a 
Mandarin-learning non-native speaker. The proposed system takes this specific problem into 
consideration and tries to create a comprehensive Mandarin Chinese pronunciation assessment 
system. 

3. The Proposed Approach 

The proposed pronunciation assessment system uses four criteria to evaluate a test utterance 
with respect to a target utterance. The algorithms of these four criteria are explained in this 
section. 

3.1 Syllable/Phone Segmentation using HMM-based Forced Alignment 
HMM (Hidden Markov Models) has been used for speech recognition with satisfactory 
performance over the past few decades [Rabiner and Juang 1993; Huang et al. 2001]. Our 
system employs a speaker-independent HMM-based recognition engine, which was trained on 
a balanced corpus of Mandarin Chinese recorded by 70 subjects in Taiwan. Each speech 
feature vector contains 39 dimensions, including 12 MFCC (Mel-Frequency Cepstral 
Coefficients) and 1 log energy, along with their delta and double delta values. 174 
right-context-dependent (RCD) biphone models are derived from the speech corpus. In other 
words, two phones are regarded as different models if their right phones are different. For 
example, the right phone of “a” in the syllable “dan” is “n”, while the right phone of “a” in the 
syllable ‘jiang’ is “ng”. As a result, the phone “a” in the syllable ‘dan’ is defined as “a+n” in 
the RCD context, to distinguish it from, say, “a+ng” in the syllable “jiang”. The number of 
RCD biphone models is much larger than that of the context-independent monophone models, 
thus a large corpus is required for the reliable training of RCD biphone models. Furthermore, 
we have also designed an efficient pruning method for our speech recognizer [Jang and Lin 
2002]. 
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For pronunciation assessment, we need to build a lexicon net consisting of the models of 
the uttered text. Then, Viterbi decoding is used to do forced alignment between the speech 
signals and the models in the lexicon net. The final results include frame indices of isolated 
syllables/phones and the corresponding log probability. The log probability is an absolute 
measure of how closely the utterance matches the acoustic models identified from the speech 
corpus. Consequently, the log probability varies considerably among different models due to 
their different phonetic characteristics, and thus cannot be used directly for phoneme 
assessment. Instead, we use a ranking-based confidence measure to be explained later. 

To deal with characters having multiple pronunciations in Mandarin, we use a 
sausage-like lexicon net. Take the sentence “朝辭白帝彩雲間” in Tang Poetry for example, 
where the third character can be pronounced as “bai” or “bo”. Both pronunciations are 
commonly used. Therefore, our lexicon net has two branches for this character to 
accommodate both pronunciations, as shown in Figure 1 where Hanyu Pinyin is used for 
phonetic transcription. 

             Figure 1. The lexicon net for “朝辭白帝彩雲間”. 

Figure 2 shows a typical result of forced alignment for the sentence “但使龍城飛將在” 
in Tang Poetry. The solid lines in the waveform plot indicate the boundaries of phones. The 
score for each syllable is labeled under each Chinese character, while the score for each phone 
is labeled under the phone name. The scores depend on the quality of the pronunciation as 
well as the correctness of forced alignment. In particular, we can see that the fricative phone 
“sh” in the second character is correctly segmented with a score of 100, while the phone “ch” 
in the forth character is badly segmented (due to its mispronunciation as a non-retroflexed 
consonant) with a score of 29. The details of phoneme assessment will be described in the next 
section. 

Figure 2 also shows the pitch vector of this utterance. The dotted lines represent the 
pitches of the voiced parts, while the union of the dotted and the solid lines represents the 
pitch curve of the whole utterance derived by dynamic programming. Details of the pitch 
tracking method can be found in Chen and Jang [2007]. 

ci 

bai 

di cai yun jian 

bo 

zhao 
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Figure 2. An example of forced alignment for the test utterance “但使龍城飛將在”. 
The upper panel shows the phone segmentation results and the 
corresponding phoneme scores. The bottom panel plots the pitch vector 
where the dotted lines correspond to the voiced parts in the utterance. 

3.2 Ranking-Based Confidence Measure for Phoneme Assessment 
The log probability represents an absolute measure of how closely a pronunciation 
approximates a given phone model, which does not take into consideration the effect of other 
competing models. As a result, the log probability varies considerably among different phone 
models due to their different phonetic characteristics. To deal with this problem, we used a 
relative measure based on the ranking among all competing biphone models. This is an 
improved version of our previous approach to confidence measure, based on the ranking 
among 411 syllables in Mandarin [Chen et al. 2004]. By using phone-based ranking, our 
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system is able to track down phone-level pronunciation errors for detailed and better 
assessment. 

The phone-based phoneme assessment proceeds as follows. 

1. For a given biphone model of “x+y”, we define the set of competing models as “*+y” 
where * is a wildcard representing all the possible phones that form a legal biphone with y. 

2. After forced alignment, we can obtain the speech signals corresponding to the biphone 
“x+y”. We then send the speech signals to the competing models for a log probability 
evaluation and find the rank (zero-based) of “x+y” in the competing models. 

3. Since each biphone has a different set of competing models, we divide the rank of “x+y” 
by the size of its competing models to obtain a rank ratio between 0 and 1. Once the rank 
ratio is obtained, the phoneme score of the i-th phone in an utterance is then determined by 
the following formula: 

phoneme,
100

1
i b

i

s
rr
a

=

+

, 
( 1 ) 

where irr  is the rank ratio of the i th biphone, and a and b are the tunable parameters of this 
scoring function. In particular, when irr  is equal to 0, a perfect score of 100 is obtained. On 
the other hand, if irr  is larger, the score is lower. The values of parameters a and b are 
empirically set to 0.1 and 2 respectively. A typical plot of function is ,phoneme  is shown in 
Figure 3. (An on-going research focus is to make the parameters a and b model-dependent and 
to determine their values automatically, which will be covered in our future publication.) 
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Figure 3. A typical plot of phonemes  with respect to irr , where a  and b  are set to 
0.1 and 2 respectively (For simplicity, we have removed the subscript i  
from the x-axis label of the plot). 
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The overall score of a test utterance with m phones can be expressed as a 
duration-weighted average of all of the phones’ scores, as follows: 

phoneme phoneme,
1

1
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where idur  is the duration of the i th phone in test utterance and  the  weighting  factor 
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 is parameterized by p. In other words, in the test utterance, a phone with a longer 

duration will have a larger weighting factor. (For a clearer notation definition, we shall use 

phonemep  to denote the free parameter p in the subsequent discussion.) Similar usage of 
log-probability is commonly adopted in the research of utterance verification [Sukkar and Lee 
1996]. 

3.3 Tone Recognition Using GMM 
Mandarin Chinese is a tonal language and each character is associated with a syllable (out of 
411 possible syllables) and a tone (out of 5 possible tones). The tone/pitch information plays 
an important part in assessing a given utterance. As a result, we need to use isolated syllables 
for tone recognition. 

Previous work of tone recognition for Mandarin Chinese is briefly described. [Chen and 
Wang 1993] classifies tones based on neural networks. More recently, Lin and Lee [2003] 
introduces a new set of inter-syllabic features to identify tones. To determine the tones of a 
given utterance, we use the pitch vector of each syllable segmented via the aforementioned 
forced alignment. Each pitch vector of a syllable is identified via the autocorrelation method 
[Huang et al. 2001], and then expanded into the Chebyshev polynomials, as explained in Li 
[2002]. 

In our experiment, a pitch vector is normalized to the interval [-1, 1] at the time axis and 
then approximated by the Chebyshev polynomials of degree 6. Moreover, before using the 
Chebyshev approximation, we have subtracted the mean from the pitch vector of a syllable. In 
other words, each pitch vector has a mean value of zero before the Chebyshev approximation 
is applied. As a result, we do not need to use 0coef  of the Chebyshev polynomials for tone 
recognition. Hence, the dimension of the feature vector for the tone recognizer is 5. In fact, 
more features can be employed for tone recognition, such as the volume of the syllable, the 
slope of the pitch vector, the duration of a syllable etc., as suggested in Huang [2006]. 
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The polynomial coefficients are then used as the feature vectors for the GMM (Gaussian 
Mixture Model) tone classifier. We used the Tang Poetry microphone corpus [Tang Poetry 
2002] of 3211 utterances recorded in our lab for the experiment. The corpus was recorded by 
eight males and two females, with a sample rate of 16 kHz and a bit resolution of 16 bits. To 
train the GMM, 2500 utterances (15144 syllables) are used as the training data and the other 
711 utterances (4422 syllables) are used as the test set. All the utterances were segmented into 
syllables via forced alignment. We discarded syllables with durations of less than four frames 
or more than sixty frames, since the alignment might have been performed incorrectly on these 
syllables. The result demonstrates that when the number of Gaussian density functions for 
each tone is 128, we can obtain a recognition rate of 80.25%. For tone recognition, we only 
consider the most common four tones, the high flat (tone 1), the low rising (tone 2), the high 
low rising (tone 3), and the high falling (tone 4). Unlike these four lexical tones, the neutral 
tone does not have a specific pitch pattern; therefore, it is easily confused with the other four 
tones. As syllables with the neutral tone usually are shorter in duration and lower in energy, 
short-time energy is found useful in addition to the apparent key features derived from 
pitch-frequency contours [Lee 1997]. Considering the similarity in the lower energy between 
tone 1 and tone 5, we put tone 5 in the same class as tone 1 in our experiment. Table 1 lists the 
confusion matrix of the tone recognition result, where we can observe that tone 3 is mostly 
likely to be misclassified as tone 4. This is because the rising end of tone 3 is usually missing 
when the speech rate is high, causing tone 3 to be confused with tone 4. 

Table 1. Confusion matrix of the test set for tone recognition 
Recognized

Answer Tone 1 Tone 2 Tone 3 Tone 4 
Recognition 

Rate 

Tone 1 1079 87 14 61 86.95% 
Tone 2 105 961 89 54 79.49% 
Tone 3 39 108 334 163 51.86% 
Tone 4 65 27 32 1055 89.48% 

Once the pitch vector of syllable i is classified into one of the four possible tones, the 
rank of the correct tone is converted into a score by the following equation: 

,
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where k is a tunable parameter and ir  is the rank of the desired tone for syllable i. When 

ir =0 (where the desired tone appears at the top of the output ranking list), we have a perfect 
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score of 100. On the other hand, if ir =3 (where the desired tone appears at the bottom), we 
have a score of 0. 
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Figure 4. Tone score curves for ir =0, ir =1, ir =2 and ir =3, respectively, with the 

value of k varying from 0 to 10. (We have removed the subscript i  from 
the x-axis label for simplicity.) 

Figure 4 shows the tone score curves for ir =0, ir =1, ir =2 and ir =3, respectively, with 
the value of k varying from 0 to 10. The overall score of an utterance with c  syllables is once 
again computed as the average of each syllable’s score weighted by its duration: 
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where idur  is the duration of the i th syllable in the test utterance and the weighting factor  

∑
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 is parameterized by p (For a clearer notation definition, we shall use tonek and  

tonep  to denote the free parameters k and p, respectively, in the subsequent sections). 

3.4 Intensity 
Intensity and rhythm are two other important factors in forming the prosody of an utterance. 
We shall describe how to determine the score of the intensity curves for measuring similarity 
in this subsection. The treatment of rhythm is covered in the next subsection. 

Intensity is also referred to as the magnitude or the volume of a given utterance, which is 
an important cue for pronunciation and its assessment [Chen et al. 2004]. Since the intensity 
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of a given text can only be found in the target utterance, the similarity score is defined 
between the intensity curves of the test and the target utterances. In comparison, the phoneme 
score is obtained from the acoustic model and the tone score is obtained from the tone 
classification; both scores do not require the use of a target utterance. 

In order to account for the variation in microphone gain, we need to normalize the signal 
amplitude of the test utterance before computing the intensity score. This is achieved by the 
least-squares estimate [chapter 5 of Jang et al. 1997] to find the best scaling factor on the test 
utterance, such that the squared error between the test and the target utterances is minimized. 
More formally, we define 1 2[ , ,...., ]Nr r r=r and 1 2[ , ,...., ]Nt t t=t as two intensity vectors of 
the reference (or target) and test utterances, respectively, after length normalization via 
interpolation. Then, the best scaling factor is computed, such that the error between the 
intensity vector of the reference utterance and the scaled version of the test utterance is 
minimized. The error can be expressed as 2 2e θ= −r t , which is minimized 
when ( ) 1ˆ T Tθ θ

−
= = t t t r . We then use the optimum value θ̂  to compute the scaled intensity 

vector of syllable i  in the test utterance. Specifically, the dissimilarity (distance) of syllable 
i  is 

22 ˆ
i i ie θ= −r t , where ir  is the intensity vector of syllable i  in the reference 

utterance, and it  is the intensity vector (after interpolation to have the same length as ir ) of 
syllable i  in the test utterance. The intensity score of syllable i  is then computed via the 
following equation: 

2i intersity,
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where k is a tunable parameter. When 2 0ie = , we have a perfect score of 100. On the other 
hand, if 2

ie  is large, the score will be small. Then, the overall intensity score of an 
utterance with c  characters is computed as a weighted average: 
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where idur  is the duration of syllable i  in the test utterance and the  weighting  factor 
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is parameterized by p. (For a clearer notation definition, we shall use  intensityk  

and intensityp  to denote the free parameters k and p, respectively, in the subsequent sections.) 
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3.5 Rhythm 
We can define the rhythm as the duration vector (obtained from the forced alignment) of all 
syllables, including the short pause between any two syllables. For an utterance with c  
syllables, we can obtain a duration vector of size 2c-1, including the durations of c  syllables 
and c-1 short-pauses. We define 1 2 2 1[ , ,....., ]cp p p −=p and 1 2 2 1[ , ,....., ]cq q q −=q as two 
duration vectors for the reference (target) and test utterances, respectively. The distance 
between these two duration vectors can be defined as the normalized sum of the absolute 
difference: 

2 1

1

1( , ) /
2 1

c
i i i

i
dist p q p

c

−

=
= −

−
∑p q .                                        ( 7 ) 

The score for measuring rhythm is computed by the following equation: 

rhythm
100

1 ( , )
score

k dist
=

+ ⋅ p q
                                            ( 8 ) 

where k is a tunable parameter. We denote the free parameter k as rhythmk  for clarity in later 
discussions. 

A summary of the proposed four evaluation criteria and their corresponding 
speech/acoustic features, target of comparisons, and dissimilarity/distance measure is shown 
in Table 2. 

Table 2. Summary of evaluation criteria and their corresponding speech/acoustic 
features, target of comparisons, and dissimilarity/distance measure. 

Criteria Speech/Acoustic 
Features Target of Comparisons 

Dissimilarity/ 
Distance Measurement 

Phoneme MFCC Acoustic models Ranking of the desired phoneme 

Tone Pitch GMM-based tone classifier Ranking of the desired tone 

Intensity Energy Intensity vector of the 
reference utterance 

Euclidean distance of scaled 
normalized intensity vectors 

Rhythm Duration 
Durations of each syllable and 

short-pause of the reference 
utterance 

Normalized absolute sum of 
difference in duration 

3.6 Parametric Scoring Function 
As mentioned in the previous subsections, we have obtained four scores based on phoneme, 
tone, intensity and rhythm. The overall scoring function is defined as the weighted average of 

four scores: 
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1 phoneme 2 tone 3 intensity 4 rhythmscore w score w score w score w score= ⋅ + ⋅ + ⋅ + ⋅ ,     ( 9 ) 

where 1 2 3 4 1w w w w+ + + = . Apparently, the overall scoring function is formed within several 
parameters, including phonemep , tonek , tonep , intensityk , intensityp and rhythmk , and 

1 2 3 4, , ,w w w w . To fine-tune these parameters to approximate the scores by the human expert, 
we employ the downhill Simplex method [chapter 7 of Jang et al. 1997] to find the optimal 
values of these parameters. Basically, the downhill Simplex method is a derivative-free 
optimization method, which is less efficient than some methods, but simple and flexible in 
implementation. The flowchart of each of the evaluation processes is shown in Figure 5. The 
experimental results are covered in the next section. 

 
Figure 5. The flowchart of the proposed approach. 

4. Experimental Results 

To construct the scoring function, we used a dataset containing 400 utterances from 20 
speakers, including 10 males and 10 females, each with various levels of proficiency in 
Mandarin Chinese. Each speaker was asked to utter 20 sentences chosen from the 300 most 
famous poems of the Tang dynasty. Some of the utterances are purposely pronounced 
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incorrectly in either content or tone to give “low-score” examples of the training data. These 
utterances were evaluated by a human expert who subjectively gave a score between 0 and 
100 to each utterance, according to the “correctness”. We then used the downhill Simplex 
method to fine tune the parameters of 1 2 3 4, , ,w w w w , phonemep , tonek , tonep , intensityk , 

intensityp  and rhythmk . The resulting value of 1w  for phoneme was 0.52, 2w  for tone was 
0.22 and 3w  for intensity was 0.1 and 4w  for rhythm was 0.16, indicating that phoneme and 
tone were more important factors for speech assessment. This is also consistent with the 
observation that an utterance with wrong phonemes or wrong tones is much more easily 
recognized than an utterance with wrong intensity or rhythm. 

Table 3. Confusion matrix in terms of three categories. 
Unit: Number of sentences Machine 

Human Good Medium Bad 
Good 121 6 5 

Medium 44 67 7 
Bad 28 10 112 

To evaluate the performance of the system, another set of 400 utterances recorded from 
10 subjects was used for an outside test. Each utterance was assigned a category out of three 
candidates: good (above 80), medium (between 60 and 80), and bad (below 60). Table 3 lists 
the test results in the form of a confusion matrix in which each column corresponds to a 
category assigned by our system, and each row corresponds to a category assigned by the 
human expert. The median category has a smaller score range of [60, 80], therefore the data 
count is also lower. 

In the above table, it is obvious that our system can match the categories assigned by a 
human expert in a satisfactory manner. The overall recognition rate in terms of these three 
categories is (121+67+112)/400 = 75%. In addition, the average of the absolute difference 
between scores from the computer and the human is 5.42, where the standard deviation is 2.31. 
In a related work, Kim and Sung [2002] reported a recognition rate of about 60% for 
intonation assessment in English learning, while Neumeyer et al. [2000] reported a 
machine-to-human correlation of 70% for American speakers learning French. Note that the 
result by Neumeyer is evaluated in the speaker level in their posterior scoring approach, which 
is different from our evaluation method. 

Our goal in this study is to identify effective features/parameters that can approximate 
the scoring of a single human expert. Actually, having two or more human experts can 
definitely help shape our system in a more reliable manner. One way to take advantage of 
multiple human experts is to create a scoring system for each of them, and then combine the 
results by voting or weighted average. This will be an important direction of our future work. 
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5. Overview of the Software System Using the Proposed Approaches 

Our software system, primarily for Japanese students, provides three different approaches to 
the learning of Mandarin Chinese, including pronunciation practice, interactive dialogue, and 
video-aided real-world dialogue. Figure 6 is a screen shot of our system when the 
pronunciation practice is in action. First, the student can choose a sentence, then the system 
will show the reference utterance at the bottom. The student can listen to the reference 
utterance before recording. After finishing the recording, the score of the test utterance is 
shown at the right-upper corner. The user can click the button labeled “點數結果” to check 
detailed scores to the phone level, as shown in the popup menu in Figure 6. 

 
Figure 6. The screen shot of the pronunciation practice in action. 

To make a vivid visual feedback, low scores for phones/syllables are displayed in red, as 
shown in the popup dialog, where “這” and “剛” have scores in red. In fact, “這” and “剛” 
were pronounced as “那” and “不”, respectively, in the test utterance. The system was able to 
detect the mispronunciation and gave both syllables poor scores of 27 and 52, respectively. 
Note that the target sentence is displayed with Chinese characters, their Hanyu Pinyin 
transcription, and the corresponding tone symbols, including “–” (tone 1), “ˊ” (tone 2), 
“ˇ” (tone 3) and “ˋ” (tone 4). Hanyu Pinyin without any tone symbol represents “tone 5”. 

Figure 7 illustrates the screen shot of video-aided real-world dialogue. The scenario in 
this example is a conversation carried in a hotel checkout procedure. The video stops 
whenever the student needs to say a sentence in response to the counter clerk. If the scores of 
the student’s utterance are higher than 80, then the video continues. Otherwise the student 
needs to practice the sentence until the score is higher than 80. The procedure is almost the 
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same as that of interactive dialogue, except that a video is played to imitate real-world 
conversations. 

Figure 7. A screen shot of the video-aided real-world dialogue. 

6. Conclusions 

In this paper, we have developed the algorithms to construct a CAPT system for evaluating the 
pronunciation of Mandarin Chinese. The proposed system uses several techniques from speech 
signal processing and recognition, including the HMM-based forced alignment, a pitch 
determination using autocorrelation, and tone recognition using GMM. By using downhill 
Simplex search, we successfully derived a set of parameters for a scoring function that can 
approximate the scores from a human expert. Similar approaches can be applied to construct 
CAPT systems for other tonal languages, such as Taiwanese, Minnan, Cantonese, Tibetan, 
Punjabi, and so on. 
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