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Abstract 

Precise phone/syllable boundary labeling of the utterances in a speech corpus plays 
an important role in constructing a corpus-based TTS (text-to-speech) system. 
However, automatic labeling based on Viterbi forced alignment does not always 
produce satisfactory results. Moreover, a suitable labeling method for one language 
does not necessarily produce desirable results for another language. Hence in this 
paper, we propose a new procedure for refining the boundaries of utterances in a 
Mandarin speech corpus. This procedure employs different sets of acoustic features 
for four different phonetic categories. In addition, a new scheme is proposed to deal 
with the “periodic voiced + periodic voiced” case, which produced most of the 
segmentation errors in our experiment. Several experiments were conducted to 
demonstrate the feasibility of the proposed approach. 

Keywords: speech assessment methods phonetic alphabet, speech corpus, 
sequential forward selection, k-nearest neighbor rule, leave-one-out, 
speaker-adapted model, context-dependent hidden Markov model (HMM). 

1. INTRODUCTION 

Corpus-based speech synthesis systems are becoming more and more popular due to the high 
degree of fluency achieved and the natural feel of the generated speech. However, such 
systems always require a significant amount of human effort in labeling the phonetic 
boundaries of the corresponding corpus [Van Erp et al. 1988] [Wang et al. 1999] [Cosi et al. 
1991]. Therefore, a great deal of research on automatic phonetic labeling methods has been 
conducted over the past several years [Ljolje et al. 1993, 1994] [Demuynck et al. 2002]. In 
general, most of these methods involve the following two steps: 

(1) rough phonetic segmentation by means of Viterbi forced alignment using HMM (hidden 
Markov models) or other statistical methods; 
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(2) high time-resolution analysis of the phonetic boundaries using boundary checking rules. 

These HMM-based recognizers can be categorized in various ways. For example, some 
use context-dependent HMM, while others use context-independent HMM [Makashay et al. 
2000]. Also, there are various types of HMM training methods, including speaker-dependent 
(SD), speaker-independent (SI), and speaker-adapted (SA) models. Although the HMM-based 
speech recognizer using MFCCs (mel-frequency cepstral coefficients) is well known for its 
excellent speech recognition, ability, its use of automatic phonetic segmentation and labeling 
does not always produce precise and satisfactory results necessary for the development of TTS. 
As a result, other acoustic features and refinement algorithms have been proposed in the 
literature to improve the phonetic labeling results obtained from HMM-based recognizers. 

Several works have focused on automatic phonetic labeling, in the last few years. For 
example, in [Bonafonte et al. 1996], Bonafonte et al. took Gaussian probability density 
distribution as a similarity measure. In [van Santen et al. 1990], Jan P. H. van Santen et al. 
adopted broad-band and narrow-band edge detection. In [Torre Toledano et al. 1998], 
Toledano et al. tried to mimic human labeling using a set of fuzzy rules. In [Sethy et al. 2002], 
Sethy at al. employed adapted CDHMM (continuous density hidden Markov model) models 
[Lamel et al. 1993]. The main focus of all of these studies has been English speech, and they 
have seldom addressed the question of which phonetic class tends to be more error prone. 
Moreover, the methods proposed in the above papers may not perform equally well when 
dealing with another language. For example, most approaches for English utterance 
segmentation can be divided into two categories: rule-based [Torre Toledano et al. 1998] and 
statistics-based [Sethy et al. 2002] methods. For a rule-based approach, one needs to define a 
set of rules (crisp or fuzzy) for various phonetic transitions. For a statistics-based approach, 
one needs to collect a sample data set and label the set accordingly. Conceptually, the 
rule-based approaches for English corpora can be adapted for application to Chinese corpora. 
But in fact, it is hard to design such a system without the aid of human experts who have a 
thorough understanding of the similarities and differences between the phonetic sets of these 
two languages. It is our belief that the above two approaches should be used in a seamless, 
integrated manner. As a result, we have developed a hybrid approach, where most of the 
boundaries are identified via statistical pattern recognition (Sequential Forward Selection, 
K-Nearest Neighbor Rule and Leave-One-Out) [Whitney 1971] [Duda et al. 2001], while the 
most difficult cases (periodic voiced + periodic voiced) are handled using a rule-based 
approach. 

Mandarin Chinese is a tonal language, and each character is associated with one or 
several syllables. A Chinese syllable is either composed of a CV (Consonant-Vowel or 
INITIAL-FINAL [Chou et al. 2002] [Lee 1997]) structure or a single V (Vowel) structure. 
Therefore, the primary effort in speech labeling focuses on precisely identifying the 
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boundaries of each syllable. Then the boundary between a consonant and a vowel within a 
syllable can be identified according to the type of a consonant. In most cases, the consonant is 
fricative, affricate, or plosive, and the consonant can easily be distinguished using several 
acoustic features other than MFCCs, such as zero-crossing rate or pitch, etc. If the consonant 
is periodic, as in the case of “ ㄌ ” ( “l” in SAMPA 
(http://www.phon.ucl.ac.uk/home/sampa/home.htm), the acronym of ‘Speech Assessment 
Methods Phonetic Alphabet’), then the consonant does not need to be segmented, and the 
whole syllable should be treated as a single unit for TTS, since further operations involving 
pitch or time scale modification should be performed on both the consonant and the vowel. 

In [Chou et al. 1998, 2002], Chou et al. proposed an SD-based HMM model plus simple 
boundary correction rules for Mandarin Chinese. However, to construct this system is time 
consuming because of the iterative procedure used for forced alignment, the correction rules 
and, re-training. In addition, it becomes particularly inefficient if the speech corpus is updated 
incrementally and regularly, such as by adding one hour of speech data per week. Furthermore, 
the SD-based HMM model may not outperform the SA-based HMM if the size of the training 
data is moderate; for example, there is one hour of data for the same speaker. 

In this paper, we propose an SA-based HMM recognizer that performs a forced 
alignment first and then employ a refinement procedure to modify the identified boundaries. 
The proposed refinement procedure uses several innovative acoustic features to refine 
boundaries for various phonetic categories. These approaches and experimental results 
obtained using them will be described in the following sections. 

 This paper is organized as follows. Section 2 introduces our forced alignment procedure 
that uses an HMM recognizer to get initial estimations of all boundaries. Section 3 explains 
the refinement procedure specially designed for four phonetic categories and describes 
acoustic features are chosen by the SFS (Sequential Forward Selection) [Whitney 1971] 
algorithm. Section 4 describes the experiments conducted to demonstrate the performance of 
the proposed refinement procedure, and presents error analysis of irretrievable errors. Section 
5 draws conclusions and discusses future work. 

2. HMM BASED RECOGNIZER 

2.1 From Orthographic Transcription to Phonetic Transcription 
Forced alignment using the HMM-based recognizer relies on knowledge of the underlying 
phonetic transcription of a given utterance. In general, once the orthographic transcription and 
speech data are both available, we can employ forced alignment for automatic phonetic 
transcription. However, some commonly used Chinese characters have multiple syllables with 
different pronunciations, depending on the lexical contexts; For instance, the Chinese 
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character “重” (meaning “heavy”) is pronounced “ㄓㄨㄥˋ”(“TS-U-@N, 4th tone” in 
SAMPA) in “重要” (meaning “important”) and “ㄔㄨㄥˊ”(“TS_h-U-@N, 2nd tone” in 
SAMPA) in “重疊” (meaning “overlap”). As a result, word segmentation in the text sentence 
is necessary for correct phonetic transcription for the purpose of alignment. Commonly used 
approaches to word segmentation in Chinese NLP (natural language processing) include the 
forward or backward maximum word matching algorithm [Chen et al. 1992][Yeh et al. 1991], 
and the dynamic-programming-based statistic probability method [Sproat et al. 1990]. 
However, no word segmentation algorithm can guarantee perfect results for the following 
reasons: 

(1) Word segmentation relies on a collection of Chinese words in the form of a dictionary, 
which cannot cover all existing words since new words are constantly being created. 

(2) Even if the word dictionary were complete, some pronunciations could not be determined 
through dictionary lookup, especially for the case of Chinese poems. For instance, the first 
character of “朝辭白帝彩雲間” (meaning “leaving Baidi city in colored dawn”) is 
pronounced “ㄓㄠ” (“TS-au, 1st tone” in SAMPA, meaning “dawn”), not “ㄔㄠˊ” 
(“TS_h-au, 2nd tone” in SAMPA, meaning “to head for”). This error cannot be corrected 
through dictionary lookup since “朝” is a single-character word meaning “morning”. 

(3) Conflicts in word segmentation can lead to different results. For instance “老掌櫃順手把錢

揣在懷裡” (meaning “the old shopkeeper smoothly slipped the money into his pocket”) will 
be labeled as “老 掌櫃 順手 把 錢 揣 在 懷裡” (meaning “the old + shopkeeper + 
smoothly + slipped + the money + into + his pocket”) if forward maximum word matching 
is used. On the other hand, it will be labeled as “老 掌櫃 順 手把 錢 揣 在 懷裡” 
(meaning “The old + shopkeeper + smoothly + handle bar + the money + into + his pocket”) 
if the backward approach is adopted. 

In order to avoid errors resulting from phonetic transcription, we perform the following 
two steps to achieve a better performance: 

(1) We perform word segmentation using forward and backward maximum matching based on 
a word dictionary containing around 90,000 entries. We keep the phonetic transcriptions as 
candidates for use in the next step. (If the result is the same, then we have only a single 
phonetic transcription.) 

(2) We expand the list of obtained phonetic transcription candidates by adding possible 
syllables for polyphonic characters that are not found in any of the words obtained through 
the above word segmentation process. We use these different phonetic transcription 
candidates to perform a forced alignment through Viterbi decoding. We accept the phonetic 
transcription that has the maximum log likelihood. 
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The above steps combine both word segmentation in NLP and forced alignment in 
speech recognition to achieve better phonetic transcription performance. When the TTS-455 
speech corpus with about 6,000 Chinese syllables was used, the syllable error rate was 2.1% 
and 1.9% for forward and backward maximum matching, respectively. With the addition of 
step 2, the error rate was reduced to 1.0%, which represents a significant reduction of 50% in 
the error rate. Some of the error cases are shown in Table 1. 

Table 1. Labeling errors when orthographic transcription was transformed to 
phonetic transcription. 

Text sentences of speech corpus. Human transcription Machine transcription 

春風秋月何時『了』 ㄌ一ㄠˇ 
 (“l-I-au, 3rd tone”) 

ㄌㄜ． 
(“l-@, 5th tone”) 

他囊『括』七面金牌 ㄎㄨㄛˋ 
(“k_h-U-o, 4th tone”) 

ㄍㄨㄚ 
(“k-U-a,1st tone”) 

道『行』高深的老僧 
掐指一算就知道對方的來意 

ㄏㄤˊ 
(“x-aN, 2nd tone”) 

ㄒ一ㄥˊ 
(“6-I-@N, 2nd tone”) 

Note: Symbols in parentheses are described in SAMPA. 

 

The last character of the first sentence is a typical single character having multiple 
pronunciations that cannot be identified through word dictionary lookup. Unfortunately, 
forced alignment cannot find the correct phonetic transcription, either, because the utterance 
itself is ambiguous and unclear. The second sentence demonstrates the inadequacy of the word 
dictionary since “括” in “囊括” (meaning “to obtain”) is labeled “ㄍㄨㄚ” (“k-U-a, 1st tone”in 
SAMPA) in the dictionary, while it is also pronounced “ㄎㄨㄛˋ”(“k_h-U-o, 4th tone” in 
SAMPA) colloquially. The error from the third sentence indicates the inadequacy of the word 
dictionary; the word “道行” (meaning “capability” or “achievement”) should be in the word 
dictionary, but it is not. 

2.2 Speech Corpus Introduction 
Once a phonetic transcription is obtained, we can perform forced alignment by using a HMM 
recognizer. In this study, we used two Mandarin Chinese speech corpora: 

(1) TTS-455 speech corpus: This corpus contains 455 sentences spoken by one speaker and 
covers about 6,000 syllables. It is mainly for TTS. The details are as follows: 

I. time duration: 30 minutes (66MB of disk space); 

II. sampling rate and bit rate: 20,000 Hz, 16bits; 

III. base syllables: 408; 

IV. tonal syllables: 1196. 
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More information on this corpus can be found in (http://speech.cs.nthu.edu.tw/gavins/ 
Research/SpeechSynthesis/content_hsf455.txt). 

(2) TCC-300 speech corpus (http://rocling.iis.sinica.edu.tw/ROCLING/MAT/ 
Tcc_300brief.htm): It contains sentences spoken by 300 subjects from National Taiwan 
University, Chiao Tung University, and Cheng Kung University in Taiwan. The recorded 
texts were selected from the “Academia Sinica Balanced Corpus” 
(http://www.sinica.edu.tw/~tibe/2-words/modern-words). 

In order to perform a forced alignment on the TTS-455 speech corpus, we need to train 
an HMM-based recognizer. This recognizer will be described in Section 4. 

3. DESIGN OF THE REFINEMENT PROCEDURE 

A post-processing scheme must be used to refine the identified syllable boundaries. 
Specifically, since a forced alignment is based on MFCCs only, it makes sense to use other 
acoustic features to enhance precision. As mentioned in Section 1, using either a rule-based or 
a statistics-based approach alone is inadequate. Therefore, we combine these two methods to 
deal with a Mandarin Chinese speech corpus. First of all, we divide all Chinese phonemes into 
four categories. Then, we determine which set is suitable for which method (rule-based or 
statistics-based) by applying pattern recognition techniques. These steps will be described in 
detail in the following subsections. 

3.1 Four Phonetic Categories 
There are 37 distinct phonetic alphabets in Mandarin Chinese. This makes it difficult to 
develop a general method that can be used to refine labeling between all possible phonetic 
transitions. Hence, we divide all Chinese phonemes into four categories according to their 
acoustic characteristics. These four categories are fricative and affricate, unaspirated stop, 
aspirated stop, and periodic voiced [Lu 2002], as listed below in SAMPA format and in the 
MPA (Mandarin Phonetic Alphabet) format: 

 

 Fricative and affricate: (consonants only) 

(Fricative) 

 SAMPA:  f  x  6  S  s 

 MPA:  ㄈ  ㄏ  ㄒ  ㄕ  ㄙ 

(Affricate) 

 SAMPA:  t6  t6_h  TS  TS_h  ts  ts_h 

 MPA:  ㄐ  ㄑ  ㄓ  ㄔ  ㄗ  ㄘ 
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 Unaspirated stop: (consonants only) 

 SAMPA:  p  t  k 

 MPA:  ㄅ  ㄉ  ㄍ 

 Aspirated stop: (consonants only) 

 SAMPA:  p_h  t_h  k_h 

 MPA:  ㄆ  ㄊ  ㄎ 

 Periodic voiced:  

(Consonants) 

 SAMPA:  m  n  l  Z 

 MPA:  ㄇ  ㄋ  ㄌ  ㄖ 

(Vowels) 

 SAMPA:  a  o  @  e  ai  ei  au  ou  an  @n  aN  @N  2  I  U  y 

 MPA: ㄚ ㄛ  ㄜ  ㄝ  ㄞ  ㄟ  ㄠ  ㄡ  ㄢ  ㄣ  ㄤ  ㄥ  ㄦ  一 ㄨ ㄩ  

 

Fricative and affricate are combined in a single category is mainly because of the 
similarity of the acoustic characteristics. In particular, for any given syllable with an affricate 
or fricative consonant, according to our observations, the duration ratio between the aperiodic 
and periodic parts is almost constant; in addition, there usually exists a high zero-crossing rate 
at the aperiodic part. As for the periodic voiced category, we include both consonants and 
vowels since they both contain stable harmonic or pitch structures. 

3.2 Feature Definition 
In order to refine the boundaries identified by the HMM-based recognizer, we need to employ 
several acoustic features other than MFCCs. Some of these acoustic features are commonly 
used in speech processing; they include the zero-crossing rate, log energy, pitch, and entropy 
[Shen et al. 1998]. In addition, we also adopt two new acoustic features, the bisector 
frequency and the burst degree, to help identify boundaries more precisely. 

3.2.1 Bisector Frequency 
The bisector frequency is defined in equations (1) and (2): 

1

1 1
arg min

2

N

fk f
fk N f

A
freqIndex A =

< < =
= −

∑
∑ ,                  (1) 
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sec freqIndexbi torFreq sampleRate
N

= × ,                    (2) 

where fA  is the amplitude of the fth frequency component and there are N distinct frequency 
components in the spectrum. The key characteristic of the bisector frequency is that its value 
is smaller for a voiced frame but larger for an unvoiced frame. Thus, we can use this feature to 
distinguish unvoiced from voiced patterns. Although the zero-crossing rate can also be used to 
detect unvoiced patterns, it is not sufficiently robust, especially when the mean amplitude of 
an unvoiced frame deviates from zero. For example, in Figure 1, the second unvoiced part of 
the waveform can be better detected by means of the bisector frequency than the zero-crossing 
rate. 

In our implementation, we normalize the value of this feature to the range [0,1] according 
to equation (3): 

secsec bi torfreq lowfreqbi torfreq
highfreq lowfreq

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

,                 (3) 

where the values of highfreq and lowfreq are empirically set to be 0.8
2

sampleRate
×  and 100, 

respectively. 
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Figure 1. A comparison between the bisector frequency and the zero-crossing rate. 
The second unvoiced part of the waveform is better detected by means of 
the bisector frequency than the zero-crossing rate. The content of this 
waveform is “在視為” (“ts-ai, S, U-ei” in SAMPA). 
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3.2.2 Burst Degree 
It is difficult to recognize a burst pattern in speech using the zero-crossing rate and/or pitch. 
This is a stable pitch structure does not exist, and the zero-crossing rate is relatively low. To 
deal with this situation, we adopt a new feature called the burst degree, which is a weighted 
average between the log energy and the reciprocal average distance between the local maxima, 
as shown in equation (4): 

( )

1 2

1 2

1 log
( max )

deg
W W Engergy

avg local Interval
burst ree

W W

⎛ ⎞
× + ×⎜ ⎟

⎝ ⎠=
+

,            (4) 

where 1W  and 2W  are two weighting factors with values of 4 and 1, respectively. The 
expression avg(local max Interval) is the average distance between the positions of 
neighboring local maxima of sample points. For instance, suppose that there are 4 local 
maxima located at positions 12, 52, 92 and 130 in a frame. Then, the intervals are 40, 40 and 
38 and avg(local max Interval) is (40+40+38)/3. Figure 2 shows the result of the burst degree. 
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Figure 2. A speech waveform and its burst degree. The content of this 
waveform is “咖” (“k_h-a” in SAMPA). 

3.3 Feature Selection Based on Phonetic Categories 
In Section 3.1, we divided all phonemes into four phonetic categories. In this section, we 
divided boundaries into groups according to the transitions between phonetic categories. For 
instance, the boundaries of a given syllable with an aspirated stop consonant can be analyzed 
as follows: 
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(1) Beginning boundary: “silence + aspirated stop” or “vowel + aspirated stop”.  

(2) Ending boundary: “vowel + silence” or “vowel + X”, where X is the consonant of the next 
syllable, which can be fricative and affricate, aspirated stop, unaspirated stop, or periodic 
voiced. 

(3) INITIAL/FINAL boundary: “aspirated stop + vowel”. (The INITIAL/FINAL boundary is 
the boundary between the consonant and the vowel within a syllable. In our experiments, we 
did not try to find these kinds of boundaries since they were not the focus of this study. 
However, we still discuss all three kinds of boundaries for the sake of completeness.) 

Based on similar analysis, we constructed Table 2 which lists all possible transitions 
from the left side to the right side for beginning, ending, and INITIAL/FINAL boundaries. 

Table 2. All possible category transitions of beginning, ending, and Initial/Final 
boundaries. 

Left side Right side Beginning 
boundary 

Ending 
boundary

Initial/Final 
boundary 

Silence Fricative and affricate O X X 
Silence Aspirated stop O X X 
Silence Unaspirated stop O X X 
Silence Periodic voiced O X X 

Fricative and affricate Periodic voiced X X O 
Aspirated stop Periodic voiced X X O 

Unaspirated stop Periodic voiced X X O 
Periodic voiced Silence X O X 
Periodic voiced Fricative and affricate O O X 
Periodic voiced Aspirated stop  O O X 
Periodic voiced Unaspirated stop O O X 
Periodic voiced Periodic voiced O O O 

O: possible transition; X: impossible transition. 
 

It is evident that not all features work equally well for each phonetic group. Therefore we 
must design an efficient method to distinguish the most outstanding among all possible 
features. In our experiment, we collected a speech corpus that contained about 2,100 syllables 
from 20 long sentences from speech lasting a total of 10 minutes. This corpus was used for 
feature selection and was fully independent of our speech corpus mentioned in Section 2.2. 
The syllables covered every Mandarin Chinese phoneme. The beginnings and endings of the 
phonetic boundaries of these 2,100 syllables were manually labeled. In the following we 
describe the steps we performed to find the best combination of features for each of these 
phonetic category transitions. 
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(1) In order to find the most discriminative features, we had to create a set of training data. This 
was done by adding several candidate boundaries, 10 ms apart, located within 80±  ms of 
a true (manually labeled) boundary. A candidate boundary was labeled “correct” if it was 
within 20±  ms of the true boundary. (According to [Chou et al. 2002], manual labeling by 
two human experts can achieve about 90% consistency with 10 ms tolerance and 100% with 
20 ms tolerance.) Therefore, we chose to use 5 correct candidates, all within 20 ms of the 
manually labeled one, in our experiments. If we had chosen only one, then the number of 
“correct” data might have been too small, leading to an unbalanced sample data set. In other 
words, for each true boundary, we created a set of 17 candidate boundaries (including the 
true one), with 5 labeled “correct” and 12 labeled “wrong” as the desired classification 
output as shown in Figure 3. 

  0  50 100 150 200 250 300 350 400 450
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

micro seconds

m
ag

ni
tu

de

Waveform
human labelled
wrong boundaries   
correct boundaries         

 

Figure 3. Training data of 5 correct boundaries and 12 wrong boundaries around 
the true boundary labeled by humans. The content of this waveform was 
“將離” (“t6-I-aN, l-I” in SAMPA). 

(2) For each candidate boundary, we evaluated the differences between all the acoustic features 
of its left and right frames. The size of each frame was 20 ms, and the “difference of 
acoustic features” was then used a feature for designing a classifier. 

(3) In order to find the most influential acoustic features, we employed the method of sequential 
forward selection (SFS) [Whitney 1971] in the literature on pattern recognition. The idea 
behind SFS is to start with a single feature having the best classification rate. Then, we can 
keep the already selected features and try to identify a newly added feature that can increase 
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the classification rate the most. For instance, if features 2 and 5 are the currently selected 
features, then we will try to find another feature that, when combined with the selected 
features, can produce the best classification rate. This greedy step is repeated until the 
desired number of features has been selected or until there is no further improvement in the 
classification rate. In order to use SFS, we need to select a classifier together with its 
performance evaluation scheme. Here, we used KNNR (K-Nearest Neighbor Rule) as the 
classifier and LOO (Leave-One-Out) [Duda et al. 2001] as the performance criterion. The 
basic idea behind 1-NNR is to assign the class of a given test vector as the data point in the 
training data that is nearest to the given vector. In order to achieve better robustness, we can 
choose KNNR, where the K nearest neighbors are selected around the test vector and the 
assigned class is determined by means of a voting mechanism among these K points. Then, 
we performed a simple search to find the best value of K in KNNR is 9 in our experiment. 
To evaluate the performance of KNNR, we apply LOO, where a vector is selected as the test 
vector and all the other data as the training data. This process is repeated until each data 
point has served as the test vector. The final classification rate is the overall classification 
rate of these test vectors. KNNR with LOO is the most straightforward approach due to its 
simplicity, although other classifiers or performance criteria could also be used, too. 

(4) We applied the procedure described above to two parts of each syllable, that is, the 
beginning and ending boundaries. 
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Figure 4. The LOO classification rates for different combinations of features for 
“silence + fricative and affricate” phonetic category at the beginning  
boundary. 
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Figure 4 shows the SFS results for the “silence + fricative and affricate” phonetic 
category at the beginning boundary, where the x-axis is the selected features and the y-axis is 
the LOO classification rates. From Figure 4, it is evident that the most distinguishing features 
for the “silence + fricative and affricate” category at the beginning boundary are the 
zero-crossing rate, bisector frequency, log energy, entropy, and burst degree, with which a 
LOO classification rate of 92.6% could be achieved. By following this same procedure, we 
could identify the most distinguishing features and their corresponding LOO classification 
rates, as shown in Table 3.1 and Table 3.2. 

Table 3.1 Classification rates of the beginning boundaries of syllables for four 
phonetic categories. 

Phonetic category transitions 
Left side Right side 

Classification
 rate Selected features 

Silence Fricative and 
affricate 92.6% Zero-crossing rate, bisector frequency, 

 log energy, entropy, and burst degree 

Silence Aspirated stop 89.0% Zero-crossing rate, log energy,  
bisector frequency, and burst degree 

Silence Unaspirated stop 92.1% Entropy, log energy, burst degree and 
bisector frequency, and MFCCs 

Silence Periodic voiced 89.1% Log energy, pitch, and burst degree 

Periodic voiced Fricative and 
affricate 92.7% Bisector frequency, log energy, 

zero-crossing rate, entropy, and burst degree

Periodic voiced Aspirated stop 87.6% Zero-crossing rate and bisector frequency 

Periodic voiced Unaspirated stop 89.2% Zero-crossing rate, log energy,  
entropy, and bisector frequency 

Periodic voiced Periodic voiced 71.8% 
Bisector frequency, log energy, 

zero-crossing rate, entropy, MFCCs, and 
burst degree 

Table 3.2 Classification rates of the ending boundaries of syllables for four phonetic 
categories. 

Phonetic category transitions 
Left side Right side 

Classification 
rate Selected features 

Periodic voiced Silence 87.4% Log energy, burst degree,  
entropy, and bisector frequency 

Periodic voiced Fricative and 
affricate 89.6% Zero-crossing rate, bisector frequency, 

pitch, log energy, burst degree, and entropy

Periodic voiced Aspirated stop 89.9% Zero-crossing rate, bisector frequency, 
pitch, log energy, burst degree, and entropy.

Periodic voiced Unaspirated stop 86.4%. Pitch and log energy 

Periodic voiced Periodic voiced 70.7% Zero-crossing rate, bisector frequency, 
pitch, log energy, MFCCs, and entropy 
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The classification rates of “periodic voiced + periodic voiced” were only 71.8% at the 
beginning boundaries and 70.7% at the ending boundaries, respectively, which are 
comparatively low. This is mainly due to inseparable co-articulation. Later in this paper, we 
shall propose and detail other heuristic rules that can be applied to enhance the performance. 

3.4 Further Improvement for “Periodic Voiced + Periodic Voiced” Cases 
In our implementation, we first obtained an initial estimate of the beginning/ending 
boundaries based on the TCC-300 trained HMM with adaptation performed by means of a 
TTS-455 corpus. For every initial boundary, we selected candidate boundaries that were 2 ms 
apart and within 40 ms at both sides of this boundary. In other words, there were 41 candidate 
boundaries. The final boundary was determined by KNNR, where K was equal to 9, and the 
training data set is the one used for SFS and LOO mentioned above. The adopted features 
were those selected by the SFS as mentioned above. 

However, for “periodic voiced + periodic voiced,” the performance was not good enough 
due to co-articulation. Hence, we devised a special scheme for this category. Specifically, we 
adopted only two features to determine the boundary. This approach is based on the 
observation that most boundaries labeled by humans are located in a region with lower log 
energy. 
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Figure 5. The three common errors in “periodic voiced + periodic voiced” cases. 
The content of the 1st waveform was “幼兒” (“I-ou, 2” in SAMPA), the 
content of the 2nd waveform was “將離” (“t6-I-aN, l-I” in SAMPA), and 
the content of the 3rd waveform was “蟲類” (“TS_h-U-@N, l-ei ” in 
SAMPA). 
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Figure 6. The corresponding log energy profiles for three “periodic voiced + 
periodic voiced” cases. 

Figure 5 and Figure 6 show typical cases for 幼兒 (“I-ou” and “2” in SAMPA), 將離 
(“t6-I-aN” and “l-I” in SAMPA), and 蟲 類  (“TS_h-U-@N” and “l-ei” in SAMPA). 
Refining the boundary of this category is more complicated, and little related research has 
been reported in the literature. In this paper, we propose a new scheme to deal with this 
category using MFCCs and log energy, as described below: 

(1) The search region is increased from 40±  ms to 80±  ms since large deviations over 50 
ms are common in the “periodic voiced + periodic voiced” category. The number of 
candidate boundaries is increased from 41 to 81. 

(2) We calculate the average log energy in the search region. We then set the new search region 
to be the one whose log energy is less than the log energy threshold, which is empirically 
defined as 0.9 times the average log energy. 

(3) Among the boundaries within the new search region, we select the one with the maximum 
distance between the MFCCs of its left and right frames. 
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Figure 7. The refined results obtained based on MFCCs and log energy for the 
“periodic voiced + periodic voiced” case.  
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Figure 8. Typical results for the refined boundary of the “periodic voiced + periodic 
voiced” case. The content of this waveform was “將離” (“t6-I-aN, l-I” in 
SAMPA). 
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Figure 7 shows typical results obtained by using the above refinement method. The 
refined boundary for the original waveform is shown in Figure 8. The experimental results and 
error analysis will be discussed in the next section. 

4. EXPERIMENT RESULTS AND ERROR ANALYSIS 

4.1 The Different Acoustic Models of HMM-based Recognizers 
To evaluate the performance of our proposed system, we used the TTS-455 corpus to verify 
the segmentation results. First, we employed different types of model training to construct an 
HMM recognizer for forced alignment, as described below: 

(1) 1st model: Speaker-independent (SI) model constructed by using the TCC-300 corpus. 

(2) 2nd model: Speaker-dependent (SD) model constructed by using the TTS-455 corpus, with 
uniform segmentation. 

(3) 3rd model: Speaker-dependent (SD) model constructed by using the TTS-455 corpus, with 
initial segmentation performed by the model trained using the TCC-300 corpus. 

(4) 4th model: Speaker-independent (SI) model constructed by using the TCC-300 corpus first 
and then adapted by using the TTS-455 corpus. 

Each of these four types of acoustic models was constructed based on context-dependent 
tri-phones. The MLLR method [Huang et al. 2001] used to construct the 4th model employs 
the regression class tree to estimate a set of linear transformations for the mean vectors and 
covariance matrices of a Gaussian mixture HMM system. The tree was constructed using a 
centroid-splitting algorithm based on the Euclidean distance measure. We applied a binary 
regression tree with thirty-two base classes to our adapted data. In order to speed up the 
adaptation process and preserve storage capacity, we used the diagonal transform matrix 
instead of the full transform matrix [Odell et al. 1995]. Hence, the 4th model can be regarded 
as a speaker-adapted (SA) model. 

The difference between the 2nd and 3rd models lies in the initial segmentation for training. 
The 2nd model uses uniform segmentation, while the 3rd model uses the segmentation derived 
by the recognizer trained using the TCC-300 corpus. Both of them can be viewed as SD 
models derived from the TTS-455 corpus. 

4.2 The Performance of Different Acoustic Modes for Labeling the 
TTS-455 Corpus 

Table 4 summarizes the results obtained with different modeling methods. The acoustic model 
for HMM forced alignment is based on context-dependent triphone modeling. From Table 4, it 
is evident that the 4th model achieved the best performance. 
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Table 4. Segmentation results w.r.t. model training (including beginning and ending 
boundaries). 

Model                  Errors <=10ms <=20ms <=30ms >50ms 

1st model 49.47% 70.58% 84.24% 4.90% 
2nd model 45.02% 69.83% 81.96% 7.64% 
3rd model  43.49% 65.55% 79.60% 8.49% 
4th model 46.09% 72.07% 87.40% 4.20% 

4.3 A Comparison of the Segmentation Rate between Forced Alignment 
and Our Refinement Procedure 

We have chosen the 4th model as our primary speech recognizer. However, its performance in 
segmentation is still not good enough for TTS application. The segmentation rate within 20 ms 
is only 72% when using the 4th model. It is probable that the system can be further improved. 
The following experiment was based on the initial boundaries identified by the 4th model. In 
our experiment, we divided the segmentation task according to groups of phonetic categories, 
as mentioned previously in Section 3.4. Table 5.1 shows the results for each phonetic category 
transition at the beginning boundary and Table 5.2 shows the results for each phonetic 
category transition at the ending boundary. Table 6 compares the overall segmentation rates 
obtained with the 4th model recognizer and our refinement procedure. 

Table 5.1 Segmentation rates obtained with the HMM recognizer and the refinement 
procedure for all phonetic categories at the beginning boundaries of 
syllables. 

<=10 ms <=20 m <=30 ms >50 ms Phonetic category 
Transitions 

Left side Right side 
H R H R H R H R 

Silence Fricative and 
affricate 23.1 77.3 59.1 91.1 91.8 96.1 1.9 1.7 

Silence Aspirated 
Stop 13.7 81.9 54.5 94.3 93.3 98.7 0.3 0 

Silence Unaspirated 
stop 13.2 89.5 53.0 98.2 92.3 99.6 0.2 0 

Silence Periodic 
voiced 8.8 70.1 46.8 86.7 86.9 92.1 3.4 2.5 

Periodic 
voiced 

Fricative and 
affricate 59.4 84.7 83.6 94.7 95.3 97.8 0.7 0.7 

Periodic 
voiced 

Aspirated 
Stop 27.0 81.5 61.7 94.6 93.1 96.5 1.2 1.2 

Periodic 
voiced 

Unaspirated 
stop 30.0 85.2 67.0 95.8 91.4 98.4 1.3 0.5 

Periodic 
voiced 

Periodic 
voiced 45.0 66.3 60.0 75.3 71.9 79.2 10.9 6.7 

Note: H: HMM results; R: Refined results; unit: %. 
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Table 5.2 Segmentation rates obtained with the HMM recognizer and the refinement 
procedure for all phonetic categories at the ending boundaries of syllables. 

<=10 ms <=20 m <=30 ms >50 ms Phonetic category 
Transitions 

Left side Right side 
H R H R H R H R 

Periodic 
voiced Silence 56.0 58.7 76.2 78.6 85.0 86.8 5.7 5.2 

Periodic 
voiced 

Fricative and 
affricate 58.3 75.0 88.2 92.8 97.2 97.3 0.5 0.3 

Periodic 
voiced 

Aspirated 
Stop 47.5 57.8 80.7 84.1 94.4 94.5 1.4 1.5 

Periodic 
voiced 

Unaspirated 
stop 57.0 73.1 91.5 91.6 98.1 97.8 0.1 0.3 

Periodic 
voiced 

Periodic 
voiced 42.9 63.5 60.8 72.8 70.9 79.6 11.5 8.4 

Note: H: HMM results; R: Refined results; unit: %. 
 

Table 6. The overall segmentation rates obtained with this system. (including 
beginning and ending boundaries). 

 <=10ms <=20ms <=30ms >50ms 
HMM-based forced alignment 46.1% 72.1% 87.4% 4.2% 

The proposed refinement method 69.1% 87.7% 94.2% 3.5% 

4.4 Results and Discussions 
From Table 5.1 and Table 5.2, we can observe that the performance for each phonetic category 
transition is satisfactory except for the category “periodic voiced + periodic voiced.” It may 
seem that our refinement method performed poorly for this category. We have carried out 
another experiment in which we applied the statistical method (just like the one applied to 
other phonetic categories) to this “periodic voiced + periodic voiced” category. The average 
segmentation rate of <=30ms for this “periodic voiced + periodic voiced” category was 60% 
lower. This clearly indicates that our refinement method (rule-based in this case) is definitely 
better. All in all, this category still poses a difficulty for automatic segmentation since there is 
usually very strong co-articulation between two neighboring syllables, such “第一” (meaning 
“number one”), “蘇武” (an ancient Chinese person’s name), and so on. 

From Table 6, it is evident that our refinement approach leads to improvement in the 
overall segmentation rate. The segmentation rate within 20 ms is significantly increased by 
about 15.6%; and the segmentation rate within 30 ms after the refinement procedure is 
performed is 94.2%, which is acceptable for general TTS systems. Admittedly, however, there 
is still some room left for future improvement, as described in the following: 
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(1) The size of our TTS-455 corpus is not large enough. A larger corpus will result in a better 
adapted model, which will reduce the segmentation errors that are larger than 50 ms. 

(2) Acoustic features other than MFCCs can potentially be used to obtain better segmentation 
rates. We are now in the process of identifying other more discriminative acoustic features 
for this purpose.  

5. CONCLUSIONS 

Correct phonetic labeling is very important for concatenation-based speech synthesis. 
Consequently, the application of automatic phonetic labeling and segmentation for corpora to 
be used in TTS has become a critical issue. In this paper, we have proposed a specific 
refinement procedure suitable for Mandarin Chinese. We divide all Chinese phonemes into 
four categories and employ the SFS algorithm to select the best features for each phonetic 
category. However, the proposed method does not work well in the “periodic voiced + 
periodic voiced” case. Hence, we have proposed an additional scheme to deal specifically with 
this case, using log energy and MFCCs. Several experiments have demonstrated the feasibility 
of the proposed approach. 

In future work, we will focus on finding new features to improve the segmentation rate in 
the “periodic voiced + periodic voiced” case. We will also apply other classifiers, such as 
SVM (support vector machine), to further improve the classification results. Finally, we will 
apply other methods for feature extraction, such as linear discriminant analysis and principal 
component analysis. 
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