®È¹C¬ÛÃö·N¨£°»´ú¤Î´ºÂI·N¨£¥Ø¼ÐÃѧO
ªL¤t³Ç¡B»¯«~»Î
[pdf
| html]
§@ªÌ:
Wei-An Chen, Jihg-Hong Lin, and Shyh-Kang Jeng
ºKn:
In this research project, we propose a model, the Harmony Graph, to decompose music into a social-network-like structure according to its harmonies. The whole Harmony Graph network represents the harmony progressions in music. The Harmony Graph is utilized to visualize, distinguish, and generate music for four prepared corpora using social network techniques. We experimented on different characteristics in social network analysis, and we found significant differences among the Harmony Graphs of the four corpora. A new measure called Agglomeration is created to characterize the agglomerating phenomenon that cannot be described sufficiently by existing measures. A corpus-based music composition method is also proposed in this research. By performing random-walk in a Harmony Graph, we generated new music that differs from yet reflects the style of music pieces in the corpus. With the link prediction technique, we also generated music more pleasant aurally than simply using random walks.
ÃöÁä¦r:
Social Network Analysis, Corpus Visualization, Corpus-Based Generation
§@ªÌ:
§õ¥Á²»¡B§d¥@¥°¡B´¿Ä³¼y¡B·¨ªÃõ¡B¨¦¦`
ºKn:
¤¤°ê¤j³°»P¥xÆWªº¤å¦r¦PÄÝ©óµØ¤å¦rÅé¡A¦ý¦rÅé¤W«o¤À¬°Â²Åé¦r»PÁcÅé¦r¡C¤¤°ê¤j³°»P¥xÆWªñ¦~¨Ó¦b¤¤¤å®ÑÄy¤Îºô¸ô¤W¬Ò¦³¤j¶qªº¸ê°T¥æ¬y¡C°ò©ó¾\Ū²ßºD¡A¤å¦r¶Õ¥²»Ýn°õ¦æÂ²ÁcÂà´««á¤~§Q©óÂù¤èªºÅªªÌ¾\Ū¡C¶Ç²ÎªºÂ²ÁcÂà´«¾Ö¦³Â²Åé¤@¦r¹ïÁcÅé¦h¦rªºª[²§°ÝÃD¥H¤Î¨â©¤¥Î»y¤£¦Pªº°ÝÃD¡C¦]¦¹¡A¥»¬ã¨s³]p¤@Ө㦳ÂX®i©ÊªºÂ²ÁcÂà´«¨t²Î¡A³z¹L¤H¤uÂ^¨úºû°ò¦Ê¬ì·s¼W¹ï·Óªí¤º®e¨Ó§ïµ½¨â©¤¥Î»y¤£¦Pªº°ÝÃD¡A¥H¤Î¨Ï¥Î»y¨¥¼Ò«¬§ïµ½Â²Åé¦r¤@Ó¦r¹ïÁcÅé¦r¦hÓ¦rªºª[²§°ÝÃD¡C¦¹¨t²Î¥i¥H°§C¦UºØ¤¤¤å¹q¤l®ÑÄy°õ¦æÂ²ÁcÂà´««á¤H¤u®Õ¥¿ªº¦¨¥»¡C¨ã¦³¼u©Êªº¬[ºc¨Ï±o¨t²Î¥i¥H«ùÄòÂX¥R§ï¶i¡C
ÃöÁä¦r:
²ÁcÂà´«¡A»y¨¥¼Ò«¬¡Aºû°ò¦Ê¬ì¡A¹ï·Óªí
§@ªÌ:
ªL¤t³Ç¡B»¯«~»Î
ºKn:
¥»¤åµJÂI¦b©ó®È¹C»â°ìªº·N¨£±´°É¡A¥]¬A®È¹C¬ÛÃö·N¨£¤§°»´ú¡A¥H¤Î´ºÂI·N¨£¥Ø¼ÐªºÃѧO¡C¹êÅç¸ê®Æ¨Ó¦Û³¡¸¨®æ¡B¤ÀÃþ¬°°ê¤º®È¹Cªº¤å³¹¡C¸ê®Æ¥Ñ¼Ð°O¤Hû¼Ð¥X·N¨£¡B¨ä·N¨£·¥©Ê¤Î¨ä·N¨£¥Ø¼Ð¡C§ÚÌ´£¥X¤F¦U¦¡µ¦²¤¤Î¾÷¾¹¾Ç²ß©Ò¥Î¯S¼x¡A¥]¬A®È¹C´ºÂIÃöÁä¦r¡B¦P«ü¯A¦r¦ê¡B®È¹C¬ÛÃö·N¨£µü¡A¥H¤Î¤G¶¥¼h¤ÀÃþ¾¹¡C§ÚÌ¥H¾÷¾¹¾Ç²ß¤è¦¡«Øºc°»´ú¨t²Î¡C·í»Ýn¥H¤W¤U¤å§PÂ_µ²ªG°µ¬°¯S¼xȮɡA·|¥H¡u¤G¦¸°V½m¡vªº¼Ò¦¡¨Ó¶i¦æ¡C®È¹C¬ÛÃö·N¨£°»´ú¼Ò²Õªººë½T²v©M¥l¦^²v¤À§O¬°55.98%©M59.30%¡A´ºÂI·N¨£¥Ø¼ÐÃѧO¼Ò²Õªººë½T²v©M¥l¦^²v«h¬°90.06%©M89.91%¡C¾ã¦X¨â¼Ò²Õ«áºë½T²v©M¥l¦^²v¤À§O¬°51.30%©M54.21%¡C
ÃöÁä¦r:
®È¹C·N¨£±´°É¡B®È¹C¬ÛÃö·N¨£°»´ú¡B´ºÂI·N¨£¥Ø¼ÐÃѧO
§@ªÌ:
卢ùÚ¡Bâ¾_华¡BÀ¹礼荣¡B¤ý¤¯华
ºKn:
¥»½g¤å³¹¤¶绍¤F¤@Ïú对°ò¤_HMM参数语µ¦X¦¨¨t统¼Ò«¬»E类过µ{¤¤ªº决µ¦树进¦æÉ¬¤Æªº¤èªk¡C该¤èªk°ò¤_¥æ¤e验证¥H¤Î³Ì¤p¥Í¦¨误®tã则¡C°ò¤_决µ¦树ªº¼Ò«¬»E类¬OHMM参数¦X¦¨¤èªk¤¤ªº«n¨B骤¡C¦b传统ªºHMM参数¦X¦¨¤èªkªº¼Ò«¬训练过µ{¤¤¡A¥Î³Ì¤j¦üµM¡]ML¡^ã则从¤W¤U¤å¬Û关问题¶°¤¤¬D选³Ìɬªº问题¡A¥Î³Ì¤p´yz¶ZÖá]MDL¡^ã则§@为决µ¦树¤Àµõªº°±¤î条¥ó¡A¨¾¤î¼Ò«¬ªº过训练¡CµM¦Ó³Ì¤p´yz¶ZÖìO°ò¤_¤@Ïú渐进©Êªº°²设¡A¦ý该°²设¦b训练数Õu¶q¤£¨¬ªº±¡况¤U¤£¦¨¥ß¡C¦}¥B¡AMDLªº训练ã则ÉO语µ¦X¦¨¤¤¨Ï±o¦X¦¨语µÉO¦ÛµM语µ³Ì±µªñªº¥Ø标¤£§¹¥þ²Å¦X¡C¦]¦¹¡A¥»¤å´£¥X¤F¤@Ïú°ò¤_¥æ¤e验证©M³Ì¤p¥Í¦¨误®t¡]¥æ¤e¥Í¦¨误®t¡^ã则ªº决µ¦树ɬ¤Æ¤èªk¡Cº¥ý§Ú们§Q¥Î¥æ¤e¥Í¦¨误®tã则¦b¾ãÊ^¤W对决µ¦树进¦æÉ¬¤Æ¡A¬D选³ÌɬªºMDL¦]¤l¡C±µ着针对ªì¨Bɬ¤Æ¦Zªº决µ¦树ªº¨C¤@个叶¤l节点进¦æ进¤@¨Bªº°ò¤_¥æ¤e¥Í¦¨误®tã则ªº¦^·¹©M¤Àµõ¡C«È观©M¥D观评测证©ú¤F¥»¤èªk¥Ñ¤_传统ªº语µ¦X¦¨决µ¦树»E类¤èªk¡C
ÃöÁä¦r:
语µ¦X¦¨¡B隐马尔¬ì¤Ò¼Ò«¬¡B决µ¦树ɬ¤Æ¡B¥æ¤e验证¡B³Ì¤p¥Í¦¨误®t