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Abstract 

Approximating a spectral envelope via regularized discrete cepstrum coefficients 
has been proposed by previous researchers. In this paper, we study two problems 
encountered in practice when adopting this approach to estimate the spectral 
envelope. The first is which spectral peaks should be selected, and the second is 
which frequency axis scaling function should be adopted. After some efforts of 
trying and experiments, we propose two feasible solution methods for these two 
problems. Then, we combine these solution methods with the methods for 
regularizing and computing discrete cepstrum coefficients to form a 
spectral-envelope estimation scheme. This scheme has been verified, by measuring 
spectral-envelope approximation error, as being much better than the original 
scheme. Furthermore, we have applied this scheme to building a system for voice 
timbre transformation. The performance of this system demonstrates the 
effectiveness of the proposed spectral-envelope estimation scheme. 

Keywords: Spectral Envelope, Discrete Cepstrum, Harmonic-plus-noise Model, 
Voice Timbre Transformation. 

1. Introduction 

Here, a spectral envelope means a magnitude-spectrum envelope. Various methods have been 
proposed to estimate the spectral envelope of a speech frame. For example, in LPC (linear 
prediction coding) based methods (O’Shaughnessy, 2000; Schwarz & Rodet, 1999), the 
frequency response of an all-pole model is used to approximate the spectral envelope of a 
speech frame. Nevertheless, the frequency response curve of an LPC all-pole model will 
usually go below the true envelope around speech formants, and go above the regions where 
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spectrum magnitudes fall suddenly. This is illustrated in Figure 1 using a frame sliced from an 
utterance of /i/. Therefore, the mismatches between the LPC envelope curve and the true curve 
cannot be ignored. 
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LPC envelope
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Figure 1. LPC and cepstrum smoothed spectral curves for a frame from /i/. 

Besides LPC, several estimation methods are based on cepstrum analysis. The simplest 
one is to keep some leading cepstrum coefficients but truncate the remanded ones, i.e. replace 
them with zeros. Then, DFT (discrete Fourier transform) is used to transform the cepstrum 
coefficients back to the spectrum domain to obtain a smoothed spectrum curve. Nevertheless, 
such a smoothed spectrum curve is not really an envelope curve because it goes between the 
peaks and valleys of a DFT spectrum. One example is the lower smoothed curve in Figure 1. 
Therefore, a real cepstrum-based method to estimate a spectral envelope was proposed later by 
Imai and Abe (Imai & Abe, 1979; Robel & Rodet, 2005). They call this method true envelope 
estimation. In our opinion, this method is good but lacking in efficiency because a lot of 
computations are required. Similarly, the method proposed by Kawahara, Masuda-katsuse, 
and Cheveign (1999), STRAIGHT, is very accurate in its estimated spectral envelope. 
Nevertheless, it also requires a considerable number of computations and cannot be used to 
implement real-time systems currently. On the other hand, Galas and Rodet (1990) proposed 
the concept of discrete cepstrum and designed a feasible estimation method with this concept. 
Later, Cappé and Moulines (1996) improved this estimation method by adding a regularization 
technique to prevent unstable vibrating of the envelope curve from occurring. We think that 
estimating a spectral envelope with discrete cepstrum is a good approach if the feasibility and 
accuracy issues must be considered simultaneously. Therefore, we began to study the 
problems that will be encountered in practice. 
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As an overview, the spectral envelope estimation scheme proposed here is shown in 
Figure 2. When a speech frame is given, its fundamental frequency is first detected in the first 
block. If a frame is decided to be voiced, its estimated fundamental frequency will be used 
later in the block, “spectral peaks selection”. Here, a method combining an autocorrelation 
function and AMDF (absolute magnitude difference function) is adopted to detect a frame’s 
fundamental frequency (Kim et al., 1998; Gu, Chang & Wu, 2004). Next, the frame is 
Hanning windowed and appended with zeros to form a sequence of 1,024 signal samples. This 
sequence is then transformed to frequency domain with FFT (fast Fourier transform) to obtain 
its magnitude spectrum. Given the magnitude spectrum, the block “spectral peaks selection” 
will determine which spectral peaks should be selected according to a method proposed here. 
After spectral peaks are selected, the frequency value of each selected peak is mapped to its 
target value with a frequency-axis scaling function proposed here. As the final step, the block 
“discrete cepstrum computation” will adopt an envelope-approximation criterion (Cappé & 
Moulines, 1996) to compute discrete cepstrum coefficients according to the selected and 
mapped spectral peaks. 
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Figure 2. Main flow of the spectral-envelope estimation scheme. 

In Figure 2, discrete-cepstrum computation is the main block, which already has been 
solved by other researchers (Cappé & Moulines, 1996). Nevertheless, the blocks, 
spectral-peak selection and frequency-axis scaling, still play important roles. When 
inappropriate peaks are selected or the frequency-axis is not scaled appropriately, the 
approximated spectral envelope will noticeably deviate from the true envelope. Therefore, we 
began to study these two blocks’ problems, and the results are presented in Sections 3 and 4, 
respectively. As to discrete cepstrum, its computation and regularization will be reviewed in 
Section 2. In Section 5, the proposed scheme is practically evaluated by applying the scheme 
to build a voice timbre transformation system. 
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2. Spectral-envelope Estimation with Discrete Cepstrum 

2.1 Discrete Cepstrum 
The concept of discrete cepstrum was proposed by Galas and Rodet (1990). They adopted the 
least square criterion to a given set of spectral peaks to derive cepstrum coefficients. Such a 
derivation method is different from the conventional one. The conventional method transforms 
the logarithmic magnitude-spectrum with inverse DFT (IDFT) to get its cepstrum coefficients. 
In the conventional method, let the obtained cepstrum coefficients be c0, c1, …, cN-1 where N is 
the length of the signal sample sequence. According to these cepstrum coefficients, the 
original logarithmic magnitude-spectrum can be restored with DFT, i.e. 

21
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where |X(k)|, k=0, 1, …, N-1 represent the magnitude spectrum. Since log|X(k)| is even 
symmetric, i.e. log|X(k)| = log|X(N-k)|, the derived cepstrum coefficients are also even 
symmetric, ck = cN-k. Therefore, Equation (1) can be rewritten as: 
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If most of the terms on the right side of Equation (2) are cancelled except the leading 
terms (e.g. p+1 terms), the magnitude spectrum computed, log S(f), would be a smoothed 
version of the original, log|X(f)|. Here, the index variable, k, in Equations (1) and (2) is 
replaced with f in order to change the frequency scale from bins to the normalized frequency 
range from 0 to 1. Accordingly, log S(f) is computed as: 
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Based on Equation (3), some researchers have proposed to approximate the spectral 
envelope of log|X(f)| with log S(f). Nevertheless, the coefficients, cn, in Equation (3) cannot be 
derived directly with IDFT. One derivation method proposed by Galas and Rodet is to define a 
set of envelope constraints and find the values of the coefficients, cn, that can best satisfy the 
envelope constraints. In this manner, the derived coefficients, cn, n=0, 1, …, p, are called the 
discrete cepstrum for log|X(f)|. 

The envelope constraints just mentioned are actually L pairs of (fk, ak) for L 
representative spectral peaks selected from the original spectrum log|X(f)|. Here, fk and ak 
represent the frequency (already normalized to the value range from 0 to 1) and amplitude of 
the k-th spectral peak, respectively. Note that L is usually larger than the cepstrum order, p. 
Hence, a least-squares criterion is adopted to minimize the approximation errors between S(fk) 
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and ak, k=1, 2, …, L. That is, the approximation error computed as 

2
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is to be minimized. This equation can be rewritten in a matrix form 
T( ) ( )A M C A M Cε = − ⋅ − ⋅                                                 (5) 

where A = [log(a1), log(a2), …, log(aL)]T, C is a column vector of (p+1) discrete cepstrum 
coefficients to be derived, i.e. C = [c0, c1, …, cp]T, and 
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When the error ε of Equation (4) is minimized with the least-square criterion, the optimal 
values of the discrete cepstrum coefficients can be derived to be 

T 1 T( )C M M M A−= ⋅ ⋅ ⋅                                                    (6) 

That is, by just executing the operations of matrix inversion and multiplication, the values of 
the discrete cepstrum coefficients can be obtained. 

2.2 Regularization of Discrete Cepstrum 
According to Equations (5) and (6), it is seen that the discrete cepstrum coefficients are 
derived in the frequency domain with the least-square criterion. Nevertheless, such a 
derivation method may encounter a vital problem in practice. That is, the spectral envelope 
computed according to Equation (3) may vibrate radically and have very large approximation 
error at some frequencies slightly away from the selected spectral-peak frequencies, fk. This is 
because the direct estimation method (i.e. Equation (6)) may sometimes be ill-conditioned. 
That is, slightly varying the frequency values of the detected spectral peaks may result in a 
very different spectral envelope curve being obtained. For example, look at the dash-lined 
spectral envelope in Figure 3. This curve is computed with 40 derived discrete cepstrum 
coefficients. Even though the first 7 spectral peaks are passed by this curve, the curve vibrates 
radically between two adjacent peaks. In practical applications, such a spectral envelope as the 
one in Figure 3 cannot be tolerated. 

Therefore, Cappé and Moulines (1996) proposed a regularization technique to prevent 
such radical vibrations from occurring. To do this, they added a curve-sharpness penalty term 
to the approximation-error calculation equation, i.e. Equation (4), thereby making the 
approximation-error calculation equation: 
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where the function R(⋅) is intended to measure the sharpness of the spectral-envelope curve 
S(f), and λ is a parameter to adjust the relative weight of the value returned by R(⋅). A typical 
function suggested for R(⋅) is 
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Figure 3. A spectral envelope computed with 40 non-regularized discrete 

cepstrum coefficients. 

When the definition of S(f) given in Equation (3) is taken into Equation (8), the following 
equation, 
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can be derived (Cappé & Moulines, 1996; Stylianou, 1996). Then, the optimal solution that 
minimizes the error calculated in Equation (7) can be derived via: 
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According to empirical experience, the parameter λ is better set to a value around 0.0001. 
Thereafter, the ill-conditioning problem can be solved, and a regularized spectral envelope 
curve will be obtained. An example of a regularized spectral envelope is the dash-lined curve 
in Figure 4, where the solid-lined curve is the same as the one in Figure 3. Apparently, the 
phenomenon of radical vibration is not seen in this figure. Note that frequency axis scaling (to 
be discussed in Section 4.2) is already applied in addition to regularization to obtain the 
spectral envelope in Figure 4. 

 
    Figure 4. A spectral envelope computed with 40 regularized discrete cepstrum 

coefficients. 

3. Selection of Spectral Peaks 

Note that the discrete cepstrum coefficients are obtained by minimizing the squared errors 
between the selected spectral peaks, ak, k=1, 2, …, L, and S(f). Therefore, selecting 
appropriate spectral peaks from a DFT spectrum is an important preprocessing step. The 
simplest selection method, i.e. locating and selecting all the spectral peaks on the spectrum as 
the final selected peaks, leads to the approximated spectral envelope being very bad and 
having a large approximation error. When such bad spectral envelopes are used to transform 
voice signals, the output obtained will suffer significant voice-quality degradation. 

Therefore, we studied this problem and found that the concept of MVF (maximum voiced 
frequency) proposed in HNM (harmonic-plus-noise model) (Stylianou, 1996; Stylianou, 2005) 
is utilizable. The MVF of a DFT spectrum is searched by testing the sharpness of the spectral 
peaks one after another. After some low-frequency spectral peaks pass the test, eventually no 
more spectral peak can pass the test. Then, the frequency of the last spectral peak passing the 
test is defined to be the MVF. In this paper, we first detect if a signal frame is voiced or 
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unvoiced. If it is detected to be voiced, the frame is further searched for the MVF value, fv, 
through the searching method proposed by Stylianou (1996). According to fv, the DFT 
spectrum of the frame is split into the lower-frequency harmonic part and the higher-frequency 
noise part. Then, for the harmonic part, the first spectral peak of a frequency within the range 
(0.5×F0, 1.5×F0), where F0 is the detected fundamental frequency, is searched for. Let the 
obtained frequency and amplitude be f1 and a1. Next, the second spectral peak of a frequency 
within the range (f1+0.5×F0, f1+1.5×F0) is searched for, and the results will be the frequency f2 
and amplitude a2. When going on in this manner, we can find the frequencies and amplitudes 
of the other spectral peaks within the harmonic part. Sometimes, it may occur that no spectral 
peak is found within a designated frequency range. In this situation, we will right shift the 
frequency range, i.e. adding 0.5×F0, and try to find again. 

For the noise part of a voiced frame, we think the searching method explained above for 
the harmonic part cannot be adopted. Note that the harmonic structure becomes obscure in the 
noise part, and the frequency gaps between adjacent peaks become randomly varied. As an 
example, inspect the DFT spectrum curve beyond 5,800Hz in Figure 4. Therefore, we adopt 
another method to find the spectral peaks for the noise part. In this method, a smooth spectral 
curve is obtained first by truncating the real-cepstrum coefficients outside the leading 30 ones, 
and transforming (via DFT) the resulting real-cepstrum sequence back to the spectrum domain. 
Then, each spectral speak within the noise part is located and its amplitude is checked. It will 
be selected if its amplitude is higher than the height of the smooth spectral curve at the peak’s 
frequency. As for an unvoiced frame, the method just explained can still be applied. This is 
because such a frame’s MVF can be directly set to 0Hz and its spectrum can be viewed as all 
in the noise part. When applying the spectral peak selection method explained above, we may 
obtain a typical result shown in Figure 5. In this figure, each occurrence of plus-sign, +, 
represents a selected spectral peak. 

Figure 5. A typical result for spectral peak selection. 
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4. Order of Discrete Cepstrum and Frequency Axis Scaling 

4.1 Order of Discrete Cepstrum 
What value should be set for the parameter, p, for the order of a discrete cepstrum? If a 
smaller value (e.g. 10) is set, the approximated spectral envelope curve will be overly smooth, 
and the approximation error will become considerably large. On the other hand, when a larger 
value is set for p, the number of computation operations needed to solve Equation (10) will 
rise at a cubic rate. Nevertheless, sufficient accuracy in spectral-envelope approximation is 
very important to prevent quality-degradation and inconsistent-timbre from occurring. For 
setting the value of p, Shiga and King (2004) argue that p should have a value from the range 
(48, 64) to obtain a sufficiently accurate approximation of spectral envelope. 

Here, we study the correlation between approximation errors and order numbers, p, 
experimentally. The approximation error is computed as 

( )-1
10 10=0 1

1 1 20log 20log ( , )
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∑                        (11) 

where Nr is the total number of frames, t
ka  denotes the amplitude of the k-th spectral peak in 

the t-th frame, and S(t, f) represents the approximated spectral envelope for the t-th fame. Here, 
375 Mandarin sentences, consisting of 2,925 syllables, were recorded from a male speaker and 
used as the testing data. According to our measurement results, the approximation error, Es, 
will decrease considerably as the order number p is increased from 5 to 30. Thereafter, Es will 
decrease only slightly as p is further increased to 50. This trend is illustrated by the curve in 
Figure 6. Therefore, we decide here to adopt 40 as the order number for p in order to obtain 
sufficiently accurate spectral-envelop approximation. 

 

Figure 6. Approximation errors versus discrete cepstrum orders. 
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4.2 Frequency Axis Scaling 
Through use of a larger order number, e.g. 40, the global approximation error of a frame’s 
spectral envelope can now be controlled. Nevertheless, local approximation errors that are 
large and cannot be ignored can still be found. For example, the spectral envelope in Figure 
7(a) is obtained by approximating with 30 discrete cepstrum coefficients, and it has two 
significant local approximation errors as circled. If the value of the order number p is 
increased to 40, the spectral envelope will become the one shown in Figure 7(b). Although the 
local approximation errors are somewhat reduced, they are still significant and cannot be 
ignored. 

 

(a) Cepstrum order set to 30 (b) Cepstrum order set to 40 
Figure 7. Spectral envelopes approximated in the linear frequency scale. 

Consider the local approximation error around 1,000Hz, as seen in Figures 7(a) and 7(b). 
From the DFT spectrum, it is known that the pitch is low (i.e. it is a male’s pitch) and the 
frequency gap between two adjacent spectral peaks is small. Under such a situation, the 
amplitudes of the third and fifth spectral peaks show rapid growth that is higher than the 
nearby peaks. Such rapid change of spectral envelope is very hard to approximate. To solve 
this situation, a conventional idea is to nonlinearly scale the frequency axis to enlarge the 
frequency gaps between low-frequency spectral peaks. Therefore, when a spectral peak of a 
frequency fk is detected, its frequency value will be scaled to kf̂  according to the formula, 
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2 (0.5 )

k s
k

s

scl f F
f̂

scl F
×

⋅
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                                                  (12) 

where scl(⋅) represents a frequency-scale conversion function and Fs is the sampling frequency. 
After frequency scaling, the spectral peaks’ frequencies and amplitudes are then taken into 
Equation (10) to compute the optimal discrete cepstrum coefficients. The step of replacing fk 
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with kf̂  also implies that the computed discrete cepstrum coefficients must be used in the 
scaled frequency axis instead of the original axis. That is, for a linear and normalized 
frequency f, its envelope magnitude, S(f), should be computed by scaling f into f̂  first then 
taking f̂  into Equation (3). 

For nonlinear frequency-axis scaling, mel and Bark frequency scales are the most famous 
(O’Shaughnessy, 2000). If the frequency conversion function, scl(⋅), adopted is a 
mel-frequency conversion, the spectral envelope shown in Figure 7(b) will be changed to the 
one shown in Figure 8(a). The major difference is that the lower-frequency spectral peaks in 
Figure 8(a) are now all passed by the approximated spectral envelope curve. Nevertheless, the 
local approximation error around 3,000Hz is still noticeable. In addition, the spectral envelope 
curve in Figure 8(a) shows much stronger vibration near the lower-frequency end than the 
curve in Figure 7(b). This stronger vibration can be seen in more detail when we redraw the 
approximated spectral envelope curve with a mel-frequency horizontal axis as shown in 
Figure 8(b). This phenomenon of over-vibration is thought to be due to the mel-frequency 
conversion that widens the frequency-scale at the low frequency end. According to the 
observed stronger vibration for mel-frequency conversion, we think much stronger vibration 
will occur if we adopt the Bark-frequency conversion for scl(⋅). This is because 
Bark-frequency conversion will have the frequency-scale at the low frequency end being 
widened more than that widened by the mel-frequency conversion. 

 

Frequency (Normalized mel)  
(a) linear-frequency horizontal axis (b) mel-frequency horizontal axis 

Figure 8. Spectral envelopes approximated in mel-frequency scale. 

Therefore, we were motivated to design a frequency conversion function in the hope of 
eliminating the phenomenon of over-vibration at the low frequency end and of reducing the 
local approximation error around 3,000Hz. After several attempts at trying function-design 
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and inspecting the approximated spectral envelope curves, we finally found a better frequency 
conversion function: 

( ) log(1 )
1,750

fscl f = +                                                    (13) 

where f is in the unit Hz. This conversion function will have the scaled frequency value, kf̂ , 
growing more slowly with fk at the low frequency end when it is used as the scl(⋅) function for 
Equation (12). The three curves shown in Figure 9 are obtained by taking Bark, mel, and our 
frequency conversions, respectively, as the scl(⋅) function for Equation (12). From Figure 9, it 
can be seen that our frequency conversion, as given in Equation (13), can indeed grow the 
scaled frequency f̂  more slowly with the linear frequency f. Via the frequency conversion 
function of Equation (13), the approximated spectral envelope in Figure 8(a) will become the 
one drawn in Figure 4. According to the spectral envelope obtained in Figure 4, it can be said 
that the frequency conversion function proposed can indeed eliminate the over-vibration 
phenomenon at the low frequency end, and reduce the local approximation error around 
3,000Hz. The reducing of the local approximation error we think is due to the increased 
vibrating capability around 3,000Hz by using the proposed frequency conversion instead of 
the mel-frequency conversion. 

 Hz  

Figure 9. Three curves of scaled frequencies by using Bark, mel, and our  
frequency conversion functions, respectively. 
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4.3 Approximation Error Comparison 
One may ask if our frequency conversion function is only better than mel-frequency 
conversion for certain signal frames. Therefore, we decided to compare the approximation 
errors of the two frequency conversions in the four frequency ranges, i.e. 0 ~ 2,000Hz, 0 ~ 
4,000Hz, 0 ~ 6,000Hz, and 0 ~ 11,025Hz. Here, the approximation error is still measured by 
the formula in Equation (11). Nevertheless, the number of spectral peaks, L, is dynamically 
checked for each frame to ensure that only the spectral peaks of frequencies within the 
currently concerned frequency range are counted. Here, 375 Mandarin sentences, consisting of 
2,925 syllables, as mentioned in Section 4.1 were used as the testing data. After all of the 
frames of the data are processed, the approximation errors measured in different frequency 
ranges and different discrete cepstrum orders are illustrated in Figure 10. 

Inspecting the error curve in Figure 10, it can be seen that across the cepstrum 
order-numbers from 30 to 50, our frequency conversion and the mel-frequency conversion 
have almost same approximation errors in the frequency range, 0 ~ 2,000Hz. Nevertheless, in 
the other three frequency ranges, our conversion function will apparently obtain smaller 
approximation errors for different cepstrum-order numbers. This decreasing of approximation 
error becomes more apparent as the frequency range becomes wider. 

 
Figure 10. Approximation errors measured for our frequency conversion and 

mel-frequency conversion in the four frequency ranges: 0 ~ 2,000Hz 
(upper left), 0 ~ 4,000Hz (upper right), 0 ~ 6,000Hz (bottom left), and 
0 ~ 11,025Hz (bottom right). 
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5. An Example Application: Voice Transformation 

Here, voice transformation means to change the timbre of an input voice to a different timbre. 
For example, it could be changing the timbre of a female adult into the timbre of a male adult 
or a child. In the past, phase vocoder was a frequently used technique to transform voice 
timbre (Moore, 1990; Dolson, 1986). Nevertheless, the basic transformation method of phase 
vocoder cannot support independent control of spectral-envelope scaling and pitch shifting. 
Therefore, we decided to apply the technique of additive synthesis developed for computer 
music synthesis (Moore, 1990) and the signal model of HNM (harmonic-plus-noise model) 
(Stylianou, 1996; Stylianou, 2005). In other words, we will use the estimated spectral 
envelope to do spectral-envelope scaling. Then, we will place harmonic partials and noise 
sinusoids under the scaled spectral envelope according to the pitch shifting requirement. In 
this manner, spectral envelope scaling and pitch shifting can be performed independently. 

We have practically implemented a voice transformation system. Its main processing 
flow is as shown in Figure 11. In this system, the input voice is first sliced into a sequence of 
frames. The frame width is 512 sample points (23.2ms) and the frame shift is 256 points 
(11.6ms) under the sampling frequency, 22,050Hz. For each frame, the processing flow shown 
in Figure 2 is executed to estimate its spectral envelope with 40 discrete-cepstrum coefficients. 
The other three blocks, “spectral envelope scaling,” “pitch shifting,” and “signal 
re-synthesizing,” will be explained in the following subsections. We tested the processing 
speed of this system on a notebook computer with an Intel T5600 1.83GHz CPU, and found 
that it will consume 0.75 sec. of CPU time on average to transform 1 sec. of voice signal. 

 

input voice
signal 

 

signal frame 
slicing 
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Figure 11. Main processing flow of the voice transformation system. 

5.1 Spectral Envelope Scaling 
Scaling of a spectral envelope can be performed in two possible directions. One direction is to 
shrink the spectral envelope to lower formant frequencies in order to obtain a male adult’s 
timbre. The other direction is to extend the spectral envelope to raise formant frequencies in 
order to obtain a child’s timbre. For example, inspect the spectral envelopes drawn in Figure 
12. The curve drawn in Figure 12(a) represents the originally estimated spectral envelope, 
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Vo(f). If this spectral envelope is shrunk and the shrinking rate is 0.7, the resulting envelope 
will be the one drawn in Figure 12(b). Apparently, the formant frequencies, F1, F2, and F3, 
are all lowered. Let the spectral envelope in Figure 12(b) be denoted by Vs(f). Then, it is 
simple to derive that Vs(f) = Vo( 10

7
f). On the other hand, if the spectral envelope in Figure 

12(a) is extended and the extending rate is 10/7, the resulting envelope will be the one drawn 
in Figure 12(c). Apparently, the formant frequencies, F1, F2, and F3, are all raised. Let the 
spectral envelope in Figure 12(c) be denoted with Ve(f). Then, it can be derived that Ve(f) = 
Vo( 7

10
f). 

 
(a) original envelope           (b) shrunk envelope           (c) extended envelope 

 
Figure 12. The scaling of an example spectral envelope. 

5.2 Pitch Shifting 
After a frame’s spectral envelope is shrunk (or extended), we can use Vs(f) (or Ve(f)) to 
determine a new set of harmonic partials and noise sinusoids. Suppose that the original pitch 
frequency of the i-th frame is 180Hz and that we intend to tune its pitch to 250Hz. Although 
the original pitch must be used in the block “spectral envelope estimating” of Figure 11, it is 
not used for pitch shifting and signal re-synthesizing. This is because we just need Vs(f) (or 
Ve(f)) to determine the amplitudes of the new harmonic partials and noise sinusoids. For 
example, the new harmonic structure of a voiced frame may look like the one shown in Figure 
13. According to a given MVF, we can place new harmonic partials into the frequency range 
below MVF, and place new noise sinusoids into the frequency range above MVF. 

In detail, the frequencies of the new harmonic partials are set as 1
if =250, 2

if =500, 

3
if =750, etc. As to their amplitudes, the spectral envelope, Vs(f) (or Ve(f)), is evaluated at the 

targeted frequencies. That is, their amplitudes are set to 1
ia  = Vs(250), 2

ia  = Vs(500), 3
ia  = 

Vs(750), etc. Besides frequency and amplitude, the other parameter of a harmonic partial is 
phase. Nevertheless, the phase values of the harmonic partials are not a concern here because 
they will not be used in the signal re-synthesizing step. For the noise sinusoids, any two 
adjacent ones are placed 100Hz apart as shown in Figure 13. After being placed, each noise 
sinusoid’s amplitude can be determined according its frequency position. 
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Figure 13. An example harmonic structure for a frame tuned to have the pitch, 

250Hz. 

5.3 Signal Re-synthesizing 
Here, the signal model, HNM, proposed by Stylianou (1996) is adopted for signal re-synthesis. 
In HNM, the spectrum of a voice frame is divided into the lower-frequency harmonic part and 
the higher-frequency noise part. The frequency that the two parts are divided according to is 
called the MVF. In the original work (Stylianou, 1996), a method is provided to dynamically 
detect each frame’s MVF. Here, to simplify the synthesis processing, we just use the static 
MVF value, 6,000Hz, across all voiced frames. As an example, the spectral envelope in Figure 
13 is divided into the harmonic and noise parts according to the MVF, 6,000Hz. 

Suppose the i-th and (i+1)-th frames are both voiced and have iL  and 1iL +  harmonic 
partials, respectively, after pitch shifting. To synthesize a signal sample for the t-th sampling 
point between the i-th and (i+1)-th frames, we first derive the frequencies and amplitudes of 
the harmonic partials for this sampling point with linear interpolation. That is, 

1
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i i
i k k

k k

f f
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where N is the number of sampling points between two adjacent frames, and L is the larger 
one of iL  and 1iL + . Here, we directly set i

ka = 0, k= iL +1, …, 1iL + , if iL  is less than 1iL + . 
Then, the harmonic signal, h(t), for the t-th sampling point is computed as 

1
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where ( )k tφ  denotes the accumulated phase on time t for the k-th harmonic partial and 
22,050 is the sampling frequency. ( 1)kφ −  is equal to ( -1)k Nφ  of the last frame to keep 
continuity of phase. If i = 0, i.e. there is no last frame, the value of ( 1)kφ −  is set randomly. 

To synthesize the noise signal for the t-th sampling point, we apply a method mentioned 
in Stylianou (1996). That is, synthesize the noise signal as the summation of the sinusoids 
whose frequencies are larger than MVF, fixed (not affected by the pitch frequency) and are 
100Hz apart. The amplitudes of the sinusoids are, however, varied with time. Let KL = MVF / 
100 and KU = 22,050 / 100. Then, the noise signal, g(t), is synthesized as: 

g( ) ( ) cos( ( )), 0  ,

( ) ( 1) 2 100 / 22,050

KU
k k

k KL

k k

t b t t t N

t t k

ψ

ψ ψ π
=

= ⋅ ≤ <

= − + ⋅ ⋅

∑
                                    (16) 

where ( )kb t  and ( )k tψ  denote the amplitude and accumulated phase, respectively, of the 
k-th sinusoid at the time point t. The value of ( )kb t  is obtained, with linear interpolation, 
with a formula similar to the one in Equation (15). Finally, the signal sample for the t-th 
sampling point is synthesized as h(t) plus g(t). 

5.4 Perception Testing 
To evaluate the performance of our voice transformation system, we first recorded three 
sentences each from a female adult and a male adult. For the female source voice, we set the 
envelope shrinking rate to 0.8 and set the pitch shifting rate to 0.6 in order to transform into a 
male timbre. For the male source voice, we set the envelope extending rate to 1.2 and set the 
pitch shifting rate to 2.1 in order to transform into a female timbre. The source voices and 
their transformed voices can be accessed at http://guhy.csie.ntust.edu.tw/dcc/vt.html. 

We invited thirteen persons to participate in the perception tests. The first type of 
perception test conducted was for evaluating the timbre recognizability of the source and 
transformed voices. That is, each participant was asked how similar the timbre of a played 
voice was to a female (or a male). Each participant was requested to give a score between 1 
and 5 to indicate how similar the heard timbre seemed. As a result, we obtained the averaged 
scores and standard deviations shown in Table 1. According to the average scores of the 
transformed timbres, i.e. 4.85 and 4.36, it can be said that the transformed voice from our 
system will have sufficiently high timbre recognizability. In addition, when comparing the 
score differences between the original and transformed voices, i.e. 0.10 (4.95-4.85) vs. 0.37 
(4.73-4.36), we find that the female source voice will induce less recognizability degradation 
than the male source voice. 
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Table 1. Perception test results for timbre recognizability. 

 Timbre 
Source voice 

Original voice Transformed voice 

Female 
Avg. score 4.95 4.85 

Std. deviation 0.15 0.23 

Male 
Avg. score 4.73 4.36 

Std. deviation 0.45 0.48 

The second type of perception test is for evaluating the voice qualities of the source and 
transformed voices. The same participants were asked what level the quality of a played voice 
was at. Each participant was requested to give a score between 1 and 5 to indicate the quality 
level of the played voice. After this type of perception test was conducted, we averaged the 
scores collected and computed their standard deviation. The results are shown in Table 2. 
According to the score differences, 0.67 (4.38 – 3.71) and 0.82 (4.00 – 3.18), it can be said 
that our system will inevitably induce a perceivable degradation of voice quality for the 
transformed voices no matter whether the source voice is uttered by a female or male. One of 
the possible reasons is that the pitch frequencies of some frames are wrongly detected, which 
causes their spectral envelopes to be approximated with noticeable errors. 

Table 2. Perception test results for voice quality. 

 Timbre 
Source voice 

Original voice Transformed voice 

Female 
Avg. score 4.38 3.71 

Std. deviation 0.39 0.53 

Male 
Avg. score 4.00 3.18 

Std. deviation 0.74 0.72 

6. Concluding Remarks 

The concept of approximating spectral envelope with discrete cepstrum was proposed several 
years ago. There are, however, three problems that must be solved for practical 
implementation. The first problem is the regularization of the discrete cepstrum coefficients to 
prevent a radical vibrating envelope curve from occurring. This problem has been solved 
already by previous researchers. In this paper, we tried to solve the other two problems, i.e. 
selecting appropriate spectral speaks and finding a better frequency axis scale. For selecting 
spectral peaks, we apply the concept of HNM to divide a spectrum into the lower frequency 
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harmonic part and the higher frequency noise part. Then, we find the spectral peaks in the 
harmonic part according to the detected pitch frequency and screen the spectral peaks in the 
noise part according to a cepstrum smoothed spectral curve. As to the problem of frequency 
axis scaling, we found that the spectral envelope approximated via the mel or Bark-frequency 
conversion still has noticeable local approximation errors. Therefore, after some attempts at 
scaling-function design, we propose a better frequency conversion function that can reduce the 
local approximation errors significantly. Then, applying the solutions to the three problems, 
we construct a spectral envelope estimation scheme. 

In addition, we built a voice transformation system on the proposed spectral envelope 
estimation scheme as an example application. This system follows the steps, spectral envelope 
estimating, spectral envelope scaling, pitch shifting, and signal re-synthesizing, to transform 
an input voice into an output voice that is of a very different timbre, i.e. the perceived gender 
and age of the voice can both be changed. To evaluate the performance of this system, we 
conducted perception tests. The averaged scores from 13 participants show that our system 
can indeed achieve the function of timbre transformation. In the future, we will apply the 
proposed spectral envelope estimation scheme to study another kind of voice transformation 
problem. That is, we will convert the voice of a specific person into the voice of another 
specific person. 
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