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Abstract 
In this study, we focus on the issue of noise distortion in speech signals, and develop two novel 
unsupervised speech enhancement algorithms including temporal lowpass filtering (TLP) and 
relative-to-maximum masking (RMM). Both of these two algorithms are conducted on the 
magnitude spectrogram of speech signals. TLP uses a simple moving-average filter to 
emphasize the low modulation frequencies of speech signals, which are believed to contain 
richer linguistic information and exhibit higher signal-to-noise ratios (SNR). Comparatively, 
in RMM we apply a mask that is directly multiplied with the speech spectrogram in a point-
wise manner, and the used masking value is directly proportional to the magnitude of each 
temporal-frequency (T-F) point in the spectrogram. The preliminary experiments conducted on 
a subset of TIMIT database show that the two novel methods can promote the quality of noise-
corrupted speech signals significantly, and both of them can be integrated with a well-known 
supervised speech enhancement scenario, namely fully convolutional network, to achieve even 
better perceptual speech quality values. 

Keywords: temporal lowpass filtering, relative-to-maximum masking, moving-average filter, 
speech enhancement 

1. Introduction
Nowadays the technologies of communication have been developed quite quickly and they

have changed and influenced our life a lot. In particular, speech communication such as speech 
signal transmission and reception through a wired or a wireless network, has been a widespread 
use in our daily life [1-2]. Therefore, high speech quality and intelligibility during 
communication gradually becomes a prerequisite.  

However, in the transmission environment of speech signals, there exist lots of distortions, 
such as additive noise, channel mismatch and reverberation, which inevitably decrease the 
speech signal quality/intelligibility seriously. To overcome these distortions in speech 
communication, a lot of researchers in recent decades have been devoted to developing speech 
enhancement (SE) techniques. These SE algorithms can be classified based on whether a 
learning/training process is involved. For example, if the noise statistics in spectral-subtractive 
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SE algorithms [3-6] and the basis of the clean signal subspace in subspace SE algorithms [7-9] 
are learned via a training set with explicit labels, then the corresponding SE methods are 
supervised. Comparatively, in the unsupervised methods, such as spectral subtraction (SS) [10], 
Wiener filtering [11], short-time spectral amplitude (STSA) estimation [12] and short-time log-
spectral amplitude estimation (logSTSA) [13], does not employ prior information about speech 
and/or noise. 

In this study, we develop two novel learning-free SE methods. One is called temporal low-
pass filtering (TLF) and the other is relative-to-maximum masking (RMM). Briefly speaking, 
TLF borrows the idea of Mod-WD [14], a learning-free SE method, while it can be 
implemented significantly more simply than Mod-WD, and the mask used in RMM is totally 
data-driven, viz. it is determined by the signal being processed and has nothing to do with a 
training set. We then examine the SE capability of the presented novel methods, and see if they 
are additive to an advanced SE framework based on a deep learning-based fully convolutional 
network (FCN) [15] to provide even better speech quality for noise-distorted speech signals. 

The remainder of this paper is organized as follows: Section 2 presents the details of two 
novel SE methods, TLF and RMM. The experimental setup is given in Section 3, and Section 
4 exhibits the experimental results together with their discussions. Finally, a concluding remark 
is provided in Section 5. 

 
 

2. The presented novel SE methods 
 
In this section, we present two novel speech enhancement methods, which are named temporal 
lowpass filtering (TLF) and relative-to-maximum masking (RMM), respectively. Both of these 
two methods modify the input utterances in the spectro-temporal (spectrogramic) domain, and 
they do not require a learning (training) procedure.  
 
2.1 Temporal lowpass filtering 
 
It has been revealed that the important information helpful for human intelligibility and 
automatic recognition is mainly dwelled in the relatively low-varying components of a speech 
temporal stream [16-18]. Thus some well-known speech enhancement and noise-robust feature 
extraction algorithms are developed via emphasizing/diminishing the low/high modulation 
frequency components of frame-wise speech feature time series. The ModWD algorithm 
discussed in the previous section follows this trend and factorizes the spectrogram of a noisy 
signal and then decrease the resulting detail (high half modulation-frequency) part. 
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Experimental results have revealed that ModWD can moderately improve the speech quality 
and it can be also well additive to some well-known SE method. 
Partially inspired by the aforementioned concept, in this study we present using a simple 
moving-average filter to process the time series of the spectrogram of noise-corrupted 
utterances. The presented scheme is analogous to ModWD in emphasizing the low-varying 
component of the acoustic spectra along the temporal axis.  
The block diagram of TLF is shown in Figure 3.1, which consists of the following three steps: 
 
Step 1: Create the spectrogram {𝑋[𝑚, 𝑘], 0 ≤ 𝑚 ≤ 𝑀− 1, 0 ≤ 𝑘 ≤ 𝐾 − 1} for a given time-
domain signal 𝑥[𝑛] , where 𝑚  and 𝑘  are respectively the indices of frame and acoustic 
frequency, and 𝑀  and 𝐾  are the total numbers of frames and acoustic frequency points, 
respectively. 
 
Step 2: Pass the magnitude spectral sequence {|𝑋[𝑚, 𝑘]|, 0 ≤ 𝑚 ≤ 𝑀 − 1} for each acoustic 
frequency (with index 𝑘 ) through a length-𝐿  moving-average filter. The resulting new 
magnitude sequence is: 
 

3𝑋4[𝑚, 𝑘]3 	= 7
8
∑ |𝑋[𝑚 − ℓ, 𝑘]|8;7
ℓ<= ,                               (3.1),  

 
where 3𝑋4[𝑚, 𝑘]3 is the updated magnitude spectral sequence.  
Step 3: Construct the new time-domain signal 𝑥>[𝑛] by applying the inverse STFT to the 
updated spectrogram, which consists of the new magnitude spectrogram ?3𝑋4[𝑚, 𝑘]3@ and the 
original phase spectrogram {∠𝑋[𝑚, 𝑘]}. 
 

 
Figure 3.1: The block diagram of TLF. 

 
 Since this new method applies a simple lowpass filter (i.e., the moving-average filter) along 
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the temporal domain of the spectrogram, it is named as temporal lowpass filtering with a short-
hand notation "TLF". Some major underlying characteristics of this new method TLF are stated 
as follows: 
1. The used moving-average filter is to emphasize the relatively low modulation frequency 

portion of the acoustic (magnitude) spectral time series, which is believed to contain 
helpful linguistic information and be more energy concentrated with a higher signal-to-
noise ratio (SNR) compared to the high modulation portion. 

2. The greater the length of the employed moving-average filter, the smoother the resulting 
magnitude spectral curve. However, the filter length needs to be carefully determined in 
order to diminish the possibly harmful high-frequency part while avoid over-smoothness 
that ruins the low-varying part. 

3. In comparison with the method ModWD that uses DWT and inverse DWT (which consists 
of at least four filtering processes together with down-sampling and up-sampling), this 
new approach just applies a filter and is thus simpler in implementation. 
 

2.2 Relative-to-maximum masking 
 
The speech enhancement methods based on time-frequency (T-F) masking have received much 
attention in the recent decade partially due to its simplicity in computation as well as high 
capability in segregation speech signals from noise. Among these mask-wise SE methods, a 
general ideal binary mask (IBM) [19,20] method uses a zero-one masking matrix performing 
on the spectrogram such that the instantaneous T-F unit for the spectrogram is kept unchanged 
if it is greater than a threshold that depends on a local SNR criterion (LC), and is set to zero 
otherwise. By contrast, the method of ideal ratio mask (IRM) [21] applies a soft mask for each 
instantaneous T-F unit, with the RMM value within the range of zero and one which somewhat 
reflects the probability of the T-F unit to be speech-wise.  
In both methods of IBM and IRM, a key procedure is to estimate the instantaneous signal-to-
noise ratio (SNR) of the processed signal. Furthermore, in the recent studies a deep neural work 
(DNN)-based scenario is used to learn the mask coefficients in IBM and IRM, which inevitably 
requires a training data set, which contains a great number of noisy-clean signal pairs.  
Partially motivated by the ideas of IBM and IRM, in this study we propose a novel RMM 
scheme which aims to enhance the spectrogram of noise-corrupted utterances. This novel 
RMM scheme requires no SNR estimation, nor a training stage. The used mask coefficients are 
totally determined by the utterance being processed. The block diagram of RMM is shown in 
Figure 3.2, which consists of the following three steps: 
 
Step 1: Create the spectrogram {𝑋[𝑚, 𝑘], 0 ≤ 𝑚 ≤ 𝑀− 1, 0 ≤ 𝑘 ≤ 𝐾 − 1} for a given time-
domain signal 𝑥[𝑛] , where 𝑚  and 𝑘  are respectively the indices of frame and acoustic 
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frequency, and 𝑀  and 𝐾  are the total numbers of frames and acoustic frequency points, 
respectively. 
 
Step 2: Compute the RMM coefficients by 
 

           𝑆CD =
|E[C,D]|

FGHI,J{|E[C,D]|}
 ,  0 ≤ 𝑚 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝐾 − 1,             (3.2) 

 
where 𝑆CD  is the mask value that will apply to the magnitude spectrogram |𝑋[𝑚, 𝑘]| at the 
𝑚KL time frame and 𝑘KL acoustic frequency bins. From Eq. (3.2), we see that the mask value 
is simply the ratio of the instantaneous T-F magnitude to the maximum T-F magnitude over the 
whole spectrogram of the utterance. Thereafter, the new magnitude spectrogram is determined 
by 
 
3𝑋4[𝑚, 𝑘]3 	= 𝑆CD|𝑋[𝑚, 𝑘]|,        0 ≤ 𝑚 ≤ 𝑀 − 1, 0 ≤ 𝑘 ≤ 𝐾 − 1.          (3.3), 

 
Step 3: Construct the new time-domain signal 𝑥>[𝑛] by applying the inverse STFT to the 
updated spectrogram, which consists of the new magnitude spectrogram ?3𝑋4[𝑚, 𝑘]3@ and the 
original phase spectrogram {∠𝑋[𝑚, 𝑘]}. 

 
Figure 3.2: The block diagram of RMM. 

 
The new RMM algorithm stated above is termed relative-to-maximum masking, abbreviated 
by RMM, since the RMM value for each T-F entity is determined by Eq. (3.2). The origin of 
RMM is a quite simple and naïve idea: a larger magnitude entity in the spectrogram often comes 
with a high signal-to-noise (SNR) ratio, and it deserves a higher confidence score which is 
reflected by a larger RMM value. Compared with the other two types of RMM methods, IBM 
and IRM, RMM does not require noise estimation, nor a supervised/unsupervised learning 
stage to determine the applied mask. The used mask in RMM is completely data-driven, viz. it 
totally depends on the test utterance being processed at the present.  
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3. Experimental setup 
  
  As for our evaluation experiments, we use a subset of the TIMIT database [22] to prepare 
the test set for all SE methods and the training set for the method FCN. TIMIT contains 
American English utterances produced by 630 speakers. From TIMIT we select 700 utterances 
pronounced by male speakers and recorded at a sampling rate of 16 Hz. Among these selected 
700 utterances, 600 utterances are used to be the training set, while the remaining 100 
utterances serve as the test set.  
Next, all of the utterances in the training and test sets are manually corrupted by additive noise 
at various signal-to-noise ratios (SNRs). The numbers of noise types that corrupt the training 
set and test set are 5 and 3, respectively.  
 
Four speech enhancement (SE) methods, including fully convolutional network (FCN), 
modulation-domain wavelet denoising (ModWD), temporal lowpass filtering (TLP) and 
relative-to-maximum masking (RMM), will be evaluated here. As for these four SE methods, 
FCN is the only one supervised learning method, which requires the training set to learn the 
associated network parameters. Some important setup factors about the used FCN here are as 
follows: 
1. The FCN model consists of eight convolutional layers with padding, each layer containing 

filters each with a filter size of 11.  
2. The activation function of for each layer output is parametric rectified linear units 

(PReLUs). 
3. The FCN model parameters are trained using Adam optimization algorithm, in which batch 

normalization is applied so as to minimize the mean square error between the output of the 
final layer and desired clean time-domain utterance. 

 
 

Regarding the other three SE methods, ModWD, TLF and RMM, which mainly process the 
magnitude spectrogram of each test utterance, the general arrangements are listed below: 
1. Each test utterance is split into overlapped frames. The frame duration and frame shift are 

set to be 64 ms and 10 ms, respectively, and thus the frame rate is 100 Hz, which covers 
the modulation frequency range [0, 50 Hz] for the analyzed speech feature streams.  

2. A Hamming window is then applied to each frame signal. 
3. The size of the discrete Fourier transform applied to each frame signal is 512, and thus 

the first 257 frequency bins of the resulting spectrum are used. 
4. The biorthogonal 3.7 wavelet basis is used for the DWT and inverse DWT of ModWD. 

231



5. The length of the moving-average filter in TLF is set to 2, with the purpose to cover the 
modulation frequencies 0-25 Hz approximately, which is highly correlated with linguistic 
information. 

6. Unless otherwise specified, in the RMM method the mask derived with the original or the 
enhanced test utterance is always applied to the spectrogram of the original (unprocessed) 
version of the test utterance. 

 
Finally, to evaluate the denoising capability of the aforementioned four SE methods, we employ 
the well-known objective measure metric, perceptual estimation of speech quality (PESQ) [23], 
which ranks the level of enhancement for the processed utterances relative to the original noise-
free ones. PESQ indicates the quality difference between the enhanced and clean speech signals, 
and it ranges from -0.5 to 4.5. A higher PESQ score implies that the tested utterance is closer 
to its clean counterpart. 
 
 

4. Experimental results and discussions 

4.1 Each single SE method 
 

 At the outset, we would like to investigate the SE behavior for any individual of the SE 
methods, which include fully convolutional network (FCN), temporal lowpass filtering (TLP), 
modulation-domain wavelet denoising (Mod-WD) and relative-to-maximum masking (RMM). 
Tables 4.1 list the PESQ scores obtained from the baseline and these SE methods with 
averaging three noisy cases "Engine", "White" and "Crowd". From this tables, we have the 
following observations: 
 
1. The PESQ score degrades as the signal-to-noise ratio (SNR) of the environment becomes 

worse, and thus it is believed to be a good metric to reflect the quality of speech utterances. 
2. About the cases of the SNR greater than -6 dB for the three noise types, FCN performs the 

best, closely followed by RMM, and then TLF and ModWD. Notably, as for the two low-
pass filtering methods, TLF behaves moderately better than ModWD while it can be 
implemented in a simpler manner. As mentioned earlier, TLF just uses a moving-average 
filter, while ModWD requires a DWT-IDWT procedure, which involves both filtering, 
down-sampling and up-sampling. 

 
To briefly conclude, FCN gives better PESQ scores than the other three methods at moderate 

noise levels, RMM works quite well for almost all SNR cases, while ModWD and TLF give 
rise to relatively slight improvement. Since these SE methods are developed along different 
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directions, it is natural to assume that the combination of two or three of them might cause 
further improvement relative to each component method. This part will be examined in the 
subsequent two sub-sections. 

 
Finally, we evaluate different SE methods in the domain of magnitude spectrogram. A speech 

signal corrupted by engine noise at 0 dB SNR is individually processed by any of these SE 
methods, and the corresponding magnitude spectrograms are shown in Figure 4.1. From this 
figure, it is clear that FCN brings an optimal denoising performance compared with the other 
methods. The novel presented RMM behaves also quite well, but it seems to over-eliminate the 
portion of high acoustic frequencies partially because these frequencies possess significantly 
low energy and cause low masking values. 

 
Table 4.1: The PESQ scores obtained from the baseline, and any of four SE methods as for 

the utterances in the three noise environments "Engine", "White" and "Crowd". 

SNR Baseline FCN ModWD TLF RMM 

-15dB 1.017 0.989* 1.035 1.035 1.122 

-12dB 1.078 1.076* 1.087 1.087 1.228 

-6dB 1.283 1.504 1.302 1.310 1.600 

0dB 1.592 2.024 1.611 1.623 1.976 

6dB 1.973 2.494 1.992 2.005 2.388 

12dB 2.391 2.855 2.407 2.423 2.737 

18dB 2.811 3.145 2.819 2.838 2.943 

 
(a) clean                     (b) noisy                   (c) FCN 

(d) ModWD                   (e) TLF                      (f) RMM 
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Figure 4.1: The magnitude spectrograms of (a) a clean-noise free signal 𝒙 (b) the noisy 
counterpart, 𝒙N, of 𝒙, which contains 0-dB engine noise, (c) the FCN-enhanced version of 𝒙N, 
(d) the ModWD-enhanced version of 𝒙N, (e) the TLF-enhanced version of 𝒙N, (f) the RMM-

enhanced version of 𝒙N 
 

4.2  The pairing of two SE methods 
As mentioned before, almost any of the used four SE methods (FCN, ModWD, TLF and 

RMM) can enhance the distorted utterances, while the SNR cases for each method to work best 
are different. In addition, these SE methods might process different parts of the distorted 
utterances with different goals in speech enhancement. For example, FCN directly minimizes 
the discrepancy of the noisy speech and its clean counterpart in the training set, ModWD and 
TLF alleviates the high modulation frequency portions in noisy speech, and TLF emphasizes 
the high-energy temporal-spectral bins. With this in mind, we would like to investigate whether 
the cascade of two or three of these SE methods can behave better than each constituent method. 
 
  First of all, the cascade of FCN and either of ModWD and TLF is evaluated, in which the 
test utterances at the three noise conditions are first processed by FCN, and the resulting 
spectrogram is lowpass filtered by ModWD or TLF. The corresponding PESQ scores are listed 
in Tables 4.2 and 4.3. From these two tables, we find that both combinations, "FCN plus 
ModWD" and "FCN plus TLF", give rise to even better results than each component method 
at almost all SNR cases (except 18 dB for FCN plus ModWD). The amount of PESQ 
improvement is more significant at lower SNRs. In addition, "FCN plus TLF" outperforms 
"FCN plus ModWD", which further reveals the advantage of TLF over ModWD, since TLF 
behaves better with a lower computational cost. 

 
Table 4.2: The PESQ scores obtained from the baseline, FCN, ModWD and the pairing of 

FCN and ModWD as for the utterances in the three noise environments "Engine", "White" 
and "Crowd". 

SNR Baseline FCN ModWD FCN+ModWD 

-15dB 1.017 0.989* 1.035 1.126 

-12dB 1.078 1.076* 1.087 1.216 

-6dB 1.283 1.504 1.302 1.629 

0dB 1.592 2.024 1.611 2.116 

6dB 1.973 2.494 1.992 2.539 

12dB 2.391 2.855 2.407 2.856 

18dB 2.811 3.145 2.819 3.112 
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Table 4.3: The PESQ scores obtained from the baseline, FCN, TLF and the pairing of FCN 
and TLF as for the utterances in the three noise environments "Engine", "White" and 
"Crowd". 

SNR Baseline FCN TLF FCN+TLF 

-15dB 1.017 0.989* 1.035 1.159 

-12dB 1.078 1.076* 1.087 1.263 

-6dB 1.283 1.504 1.310 1.672 

0dB 1.592 2.024 1.623 2.144 

6dB 1.973 2.494 2.005 2.559 

12dB 2.391 2.855 2.423 2.888 

18dB 2.811 3.145 2.838 3.149 

 
  Next, we examine the integration of RMM with the other three methods. The mask used in 
RMM is created by any of FCN-, ModWD- and TLF-preprocessed test utterances, which is 
then applied to the "original" (unprocessed) test utterance counterpart. The respective PESQ 
results are shown in Tables 4.4, 4.5 and 4.6. From the three tables and figure we have several 
findings listed below: 
1. As for the method "FCN plus RMM", it performs better than FCN and RMM at low SNRs, 

-15 dB, -6 dB and 0 dB, while it gets worse with the increase of the SNR. One possible 
reason for the performance degradation at higher SNRs is the phase mismatch in the 
complex-valued spectrograms of the original and FCN-processed utterances. As we know, 
FCN updates a test utterance in the time domain, and thus changes both the magnitude and 
phase parts of the respective spectrogram. However, only the FCN-processed magnitude 
part is used to create the mask in RMM, which is applied to the original magnitude part. 
Accordingly, the FCN-processed phase part is discarded in the whole process. 

 
2. Regarding the two combinative methods "ModWD plus RMM" and "TLF plus RMM", the 

associated PESQ scores are always much higher than the single ModWD and TLF, 
indicating that for the original noisy spectrogram, the masking operation (with spectrogram 
masks created by ModWD- and TLF-processed signals) are more effective than the 
operations of ModWD and TLF. In addition, "ModWD plus RMM" and "TLF plus RMM" 
outperforms RMM for the SNRs less than 18 dB. At a high SNR as 18 dB, the Mod-
WD/TLF-wise masks might over-smooth the spectrogram, and thus are less helpful than 
the mask created by the nearly clean signal. 
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Table 4.4: The PESQ scores obtained from the baseline, FCN, RMM and the pairing of FCN 
and RMM as for the utterances in the three noise environments "Engine", "White" and 

"Crowd". 

SNR Baseline FCN RMM FCN+RMM 

-15dB 1.017 0.989* 1.122 1.039 

-12dB 1.078 1.076* 1.228 1.190 

-6dB 1.283 1.504 1.600 1.718 

0dB 1.592 2.024 1.976 2.118 

6dB 1.973 2.494 2.388 2.390 

12dB 2.391 2.855 2.737 2.566 

18dB 2.811 3.145 2.943 2.719* 

 

Table 4.5: The PESQ scores obtained from the baseline, ModWD, RMM and the pairing of 
ModWD and RMM as for the utterances in the three noise environments "Engine", "White" 

and "Crowd". 

SNR Baseline ModWD RMM ModWD+RMM 

-15dB 1.017 1.035 1.122 1.140 

-12dB 1.078 1.087 1.228 1.252 

-6dB 1.283 1.302 1.600 1.615 

0dB 1.592 1.611 1.976 1.998 

6dB 1.973 1.992 2.388 2.403 

12dB 2.391 2.407 2.737 2.741 

18dB 2.811 2.819 2.943 2.926 

 

Table 4.6: The PESQ scores obtained from the baseline, TLF, RMM and the pairing of TLF and 
RMM as for the utterances in the three noise environments "Engine", "White" and "Crowd". 

SNR Baseline TLF RMM TLF+RMM 

-15dB 1.017 1.035 1.122 1.132 

-12dB 1.078 1.087 1.228 1.257 

-6dB 1.283 1.302 1.600 1.628 

0dB 1.592 1.611 1.976 2.012 

6dB 1.973 1.992 2.388 2.416 

12dB 2.391 2.407 2.737 2.755 

18dB 2.811 2.819 2.943 2.939 
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  Finally, the results for all combinative methods are summarized in Table 4.7 and Figure 4.2. 
From these results, we find that the method "FCN plus TLF" behaves the best, except for the 
case of -6 dB-SNR, showing that a simple lowpass filtering is quite additive to FCN to alleviate 
the noise effect. Comparatively, the two well-behaved methods, FCN and RMM, do not 
necessarily exhibit the most complementary effect.  
 
Table 4.7: The PESQ scores obtained from several combinative methods as for the utterances 

in the three noise environments "Engine", "White" and "Crowd". 

SNR FCN+ModWD FCN+TLF FCN+RMM ModWD+RMM TLF+RMM 

-15dB 1.126 1.159 1.039 1.140 1.132 

-12dB 1.216 1.263 1.190 1.252 1.257 

-6dB 1.629 1.672 1.718 1.615 1.628 

0dB 2.116 2.144 2.118 1.998 2.012 

6dB 2.539 2.559 2.390 2.403 2.416 

12dB 2.856 2.888 2.566 2.741 2.755 

18dB 3.112 3.149 2.719 2.926 2.939 
 
                  (a) clean                        (b) noisy 

 
             (c) FCN+ModWD                     (d) FCN+TLF 

 

Figure 4.2: The magnitude spectrograms of (a) a clean-noise free signal 𝒙 (b) the noisy 
counterpart, 𝒙N, of 𝒙, which contains 0-dB engine noise, (c) the FCN-plus-ModWD-

enhanced version of 𝒙N, (d) the FCN-plus-TLF-enhanced version of 𝒙N 
Figure 4.2 shows the magnitude spectrograms for the clean and noisy signals, plus the signals 
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processed by two combinative methods, "FCN+ModWD" and "FCN+TLF", which have been 
revealed to promote the PESQ scores apparently. From this figure, we reconfirm that these two 
combinative methods can reduce the noise effect a lot in the distorted signal and thus bring the 
recovery of the embedded clean noise-free part. 
 
4.3  The integration of three SE methods 
 Following the trend in the previous two sub-sections, here we would like to investigate what 
happens if we use the concatenation of three SE methods to process the test utterances. For 
simplicity, we use two forms of concatenation: one is FCN followed by ModWD and RMM in 
turn, denoted by "FCN+ModWD+RMM", and the other is FCN followed by TLF and RMM 
successively, denoted by "FCN+TLF+RMM". Therefore, these two forms differ in the used 
lowpass processing method at the median stage. The corresponding PESQ scores are listed in 
Tables 4.11and 4.12. For the ease of comparison, the results of FCN, FCN plus ModWD/TLF, 
and ModWD/TLF plus RMM are also listed in these tables. According to the results, we have 
two findings: 
1. The two forms of three-method concatenation outperform the single FCN and the other 

two-method concatenations at the SNRs of -12 dB, -6 dB and 0 dB. When the SNR becomes 
higher, adding RMM at the final stage fails to increase the PESQ scores, which is probably 
due to an effect of over-adjustment. 

2. When used in the intermediate or final stage, TLF always behaves superior to ModWD. 
This again confirms the advantage of TLF over ModWD. 

 
Table 4.11: The PESQ scores obtained from FCN, FCN plus ModWD, ModWD plus RMM, 

and FCN plus ModWD and RMM, as for the utterances in the three noise environments 
"Engine", "White" and "Crowd". 

SNR FCN FCN+ModWD ModWD+RMM FCN+ModWD+RMM 

-15dB 0.989 1.126 1.140 1.103 

-12dB 1.076 1.216 1.252 1.262 

-6dB 1.504 1.629 1.615 1.780 

0dB 2.024 2.116 1.998 2.157 

6dB 2.494 2.539 2.403 2.410 

12dB 2.855 2.856 2.741 2.567 

18dB 3.145 3.112 2.926 2.707 

 
Table 4.12: The PESQ scores obtained from FCN, FCN plus TLF, TLF plus RMM, and FCN 

plus TLF and RMM, as for the utterances in the three noise environments "Engine", 
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"White" and "Crowd". 

SNR FCN FCN+TLF TLF+RMM FCN+TLF+RMM 

-15dB 0.989 1.159 1.140 1.141 

-12dB 1.076 1.263 1.252 1.285 

-6dB 1.504 1.672 1.615 1.797 

0dB 2.024 2.144 1.998 2.165 

6dB 2.494 2.559 2.403 2.411 

12dB 2.855 2.888 2.741 2.572 

18dB 3.145 3.149 2.926 2.714 

 

5 Conclusion 
  To our knowledge, a fully convolutional network (FCN) applied in an SE framework 
outperforms conventional neural networks like densely connected network and convolutional 
neural network (convnet) in promoting the quality of distorted speech signals. Compared with 
an FCN-based SE framework, the two novel learning-free SE algorithms, temporal lowpass 
filtering (TLF) and relative-to-maximum masking (RMM) presented in this paper are shown 
to provide even better denoising performance at some particular signal-to-noise ratio (SNR) 
cases, despite their simplicity in implementation and their irrelevance with pre-training. 
Furthermore, our experimental results show that TLF is quite complementary to FCN since the 
paring of FCN and TLF behaves significantly better than FCN alone. We also show that the 
two novel methods, TLF and RMM, are quite additive to each other. 
In the future avenue, we plan to evaluate FCN, TLF and RMM and the respective possible 
integrations on the other speech databases, which are recorded in environments that contain 
various distortions such as additive noise, channel mismatch, and reverberation. In addition, 
we would like to investigate the theoretical reason why RMM can bring about significant 
speech quality improvement, and further enhance it by tuning the used mask with a learning 
scenario. 
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