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Abstract

Polarity inversion based speech watermarking scheme hide data in speech by modification of the
speech polarity. This paper build a statistical model of the polarity detection problem, based on
this model, the original polarity detection scheme and the optimal detection scheme are analyzed
and compared. The theoretical analysis results are validated by Monte Carlo simulation, the
optimal polarity detector shows significant performance gain compared with the original polarity
detection algorithm.

1 Introduction

Polarity Inversion (PI) based watermarking scheme utilizes the fact that the human auditory
system (HAS) is insensitive to the polarity of the speech signal [1]. Secure data can be hidden
in speech signal by inverting the polarity of certain portion of the signal. PI watermarking can
be classified as phase coding scheme [2, 3], the phase of the speech is changed by 180 degrees
for PI watermarking. PI is very robust against noise addition and filtering operations because
the polarity of the voiced frame won’t change under these manipulations. The drawback of PI
watermarking is that it is not secure, but it is very useful for content annotation and in-band
signalling applications [4]. The problem to be solved by this paper is to evaluate the performance
of the polarity detection algorithms. This is done by first building a statistical model for the
speech residual signal, based on this model, the performance of the original polarity detection
algorithm is analyzed, this result is compared to the performance of the optimal polarity detector.
Finally, we perform Monte Carlo simulation to validate the theoretical analysis.

2 Detection Performance of the Original Method

The polarity detection scheme proposed by [1] can be summarized as a two-step procedure for
each syllable, first, the polarity of the maximum peak in the LPC residual signal of each voiced
frame is estimated, second, the polarity of each syllable is determined by majority vote. In this
section we will analyze the error probability of this detection scheme. When the AR model
order is properly chosen, the residual signal of the voiced frame can be modeled as impulse train
in Additive White Gaussian Noise (AWGN), so we can build the following model under each
hypothesis:

H0 : s[n] = −
K−1∑

k=0

Aδ[n− kP ] + w[n] (1)



H1 : s[n] = +
K−1∑

k=0

Aδ[n− kP ] + w[n] , (2)

where P is the pitch period, A is the amplitude of the impulse train, K is the number of pitch
period in each frame, w[n] is Gaussian noise with mean zero and variance σ2. For ease of analysis,
we made the following assumptions: the sample values in the location of impulses are not affected
by the AWGN, the validity of this assumption will be verified by Monte Carlo simulation. Under
this assumption, the probability of detection error in each frame is

PEF =
1
2

Pr {max(s) > A|H0}+
1
2

Pr {min(s) < −A|H1} ,

where s = [s[0], · · · , s[N − 1]]T , it is assumed that P (H0) = P (H1) = 1/2. The error probability
under H1 is calculated as

Pr {min(s) < −A|H1} = Pr {min(w) < −A|H1}

= 1−
[
1−Q

(
A

σ

)]N

,

where Q(x) =
∫ +∞

x
1√
2π

exp
(−t2/2

)
dt. By symmetry of the problem and the noise distribution,

the error probabilities under each assumption are equal, so we have

PEF = 1−
[
1−Q

(
A

σ

)]N

.

Suppose that the voiced portion of one syllable has M frames, since the estimation error proba-
bility of each frame is PEF, then the error probability of final decision by majority vote is

PE =
M∑

m=dM/2e

(
M

m

)
Pm

EF (1− PEF)M−m
, (3)

where dxe rounds x to the nearest integers towards +∞.

3 Detection Performance of the Optimal Detector

In this section, we consider a more systematic approach for detecting speech polarity using
signal detection framework. Fig. 1 shows the signal generation model for voiced speech, If the
information bit to hide is 0, the speech signal is modeled as the output of an all-pole model
excited by the summation of u0[n] and w[n], otherwise, the excitation signal is the summation
of u1[n] and w[n]. Let h[n] be the impulse response of the all-pole system, then the detection
problem is to distinguish between the following two hypotheses

H0 : x[n] = −
PAR∑

l=1

alx[n− l]−
K−1∑

k=0

Aδ[n− kP ] + w[n]

= u0[n] ∗ h[n] + w[n] ∗ h[n]
= û0[n] + ŵ[n]

H1 : x[n] = −
PAR∑

l=1

alx[n− l] +
K−1∑

k=0

Aδ[n− kP ] + w[n]

= u1[n] ∗ h[n] + w[n] ∗ h[n]
= û1[n] + ŵ[n]

The parameters {al}PAR
l=1 , PAR, P, K are assumed known or can be estimated from the speech

signals [5]. Since ŵ[n] is the output of an all-pole model excited by IID WGN, so ŵ[n] is



stationary WGN with mean zero and covariance matrix C. To minimize the probability of
decoding error, the optimal detection statistic for distinguishing between û1 and û0 can be
found to be [6][7]

T (x) = xT C−1 (û1 − û0) , (4)

which minimizes the probability of detection error. When N is large and the noise is wide sense
stationary(WSS), the test statistic is approximated by

T (x) '
∫ 1/2

−1/2

X(f)
[
Û1(f)− Û0(f)

]∗

Pŵŵ(f)
df ,

where X(f), Û1(f), Û0(f) are the DTFT of x[n], û1[n], û0[n] respectively. Pŵŵ(f) is the power
spectrum density(PSD) of the noise ŵ[n], i.e.,

Pŵŵ(f) =
σ2

∣∣∣1 +
∑PAR

l=1 al exp (−j2πfl)
∣∣∣
2 .

The test statistic can be further simplified by invoking the Parseval’s theorem, so we have

T (x) '
∫ 1/2

−1/2

X(f)
[
Û1(f)− Û0(f)

]∗

σ2

∣∣∣∣∣1 +
PAR∑

l=1

al exp (−j2πfl)

∣∣∣∣∣

2

df

=
2
σ2

N−1∑

n=PAR

(
xw[n]

K−1∑

k=0

Aδ[n− kP ]

)

=
2
σ2

K−1∑

k=0

Axw[kP ] ,

where xw is the whitened x[n] by inverse filtering [5]. All-PoleModel{ } AR1Pl la =1[ ]u n0[ ]u n

[ ]w n

[ ]s n [ ]x n

Figure 1: Polarity inversion watermarking model

The detection threshold γ is found to be

γ =
1
2

(
ûT

1 C−1û1 − ûT
0 C−1û0

)
.

It can be shown that

ûT
1 C−1û1 = ûT

0 C−1û0 =
A2K

σ2
,

which implies that the detection threshold is γ = 0. In summary, the optimal detector decide
H1 if

T (x) =
2
σ2

K−1∑

k=0

Axw[kP ] > 0 . (5)

The detector performance in terms of probability of error can be proved to be

PE = Q

[
1
2

√
(û1 − û0)

T C−1 (û1 − û0)
]

(6)

= Q

(√
A2K

σ2

)
. (7)
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Figure 2: Comparison of theoretical PE

Table 1: Parameters of Monte Carlo simulation to validate the assumptions

Parameter Value
fs 8kHz
P 60
N 300
A from 3 to 5
σ 1

Performance Comparison of the Two Methods

In order to compare the theoretical results of (3) and (7), we set K × P = N ×M . The pitch
period P is chosen as 60. The results are shown in Fig. 2, the theoretical PE of the optimal
detector outperforms the original detector by tens of order of magnitude. When the number of
frames in the voiced segment increases, more information-carrying samples are available, the PE

of both detectors decrease, this is shown in the figure for M = 3 and M = 5.

4 Monte Carlo Simulation

In this section, we perform the Monte Carlo Simulation to validate the theoretic analysis.

Validation of the Assumption in Section 2

In section 2, we have made the following assumptions to simplify the analysis: the sample values
in the location of impulses are not affected by the AWGN, it is also assumed that the amplitude
of the impulse is larger than the maximum absolute value of the AWGN. Here we will use
Monte Carlo simulation to evaluate the effects of these assumptions on the final results. The
parameters used in the simulation are shown in Table 1. The Monte Carlo simulation results are
shown in Fig. 3 for A = 3, 4, 5, the comparison between analytical results and simulation results
reveals that the analytical PEF is about ten times larger than the simulation results, however,
the analytical results with the assumptions provide an upper bound for the true situations, the
assumptions tends to be more realistic for larger A/σ. Furthermore, in the above comparison



between the performance of the original and the optimal detector, we see that the PE of the
optimal detector is tens of order of magnitude smaller than the non-optimal case, so the analytical
results are valid for comparison purpose.
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Figure 3: Comparison between analytical results and Monte Carlo simulation results of PEF

Validation of the Impulse Train + WGN Residual Model

In order to validate the “Impulse Train + WGN” model for the residual signal, we perform
the following statistical experiments on the real speech signals: first, we compute the residual
signal of the voiced frames, then, the impulses are treated as outliers [8], they were eliminated
from the residual signal, the histogram of the the remaining residual signal are calculated and
compared to the empirical Gaussian PDF with parameters estimated from the data by maximum
likelihood (ML) estimation. The outlier detection scheme was based on method proposed in [9],
which calculate Mi = 2 (xi − x50%)/(x84% − x16%) for each data sample xi, where x50% is the
median of data sequence {xi}N

i=1, x84% and x16% are the 84% and 16% percentile respectively, xi

is classified as outlier when |Mi| > 3. Fig. 4 shows the experimental results when applying the
outlier detection and elimination algorithm on residual signals, due to the non-stationary nature
of the speech signal, the outlier detection and elimination algorithm were performed frame by
frame . After the removal of outliers, the histogram of the residual signal is fitted by Gaussian
distribution. The result is shown in Fig. 5, which shows good matching between the histogram
and the Gaussian distribution PDF. The sample mean and standard deviation is estimated to
be -0.0016 and 0.0277 respectively. The amplitude of the impulses are found to be between 0.1
to 0.15, the quantity A/σ is between 3 and 6. The pitch period can be found manually to be 40
and 41. Using the parameters estimated above, the synthesized speech residual signal is shown
in Fig. 6. We will use this model to validate the theoretical PE of optimal detector by Monte
Carlo simulation.

Validation of PE of the Optimal Detector

To validate the results in (7), we perform the Monte Carlo simulation to estimate P̂E. The
detector (5) is applied on data sequences generated by the “impulse train + WGN ” model, the
number of detection errors is counted, the estimated P̂E can be calculated as

P̂E =
# of detection errors

# of Monte Carlo simulations
.
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Figure 4: Speech residual signal before and after outlier elimination

Figure 5: Histogram and Gaussian PDF with parameters estimated from speech residual after
elimination of outliers

From the theoretical analysis, we see that the detection error is rather rare event, for example,
when A/σ = 5,M = 3, PE is approximately 10−80, to simulate the rare event, we use importance
sampling to reduce the variance of P̂E [10, 11]. Due to the symmetry of the detection problem
and the noise distribution, we only consider the detection error under H1, which is

PE = PE|H1 = Pr

{
1
K

K−1∑

k=0

w[kP ] < −A;H1

}

= Pr

{
1
K

K−1∑

k=0

w[kP ] > A;H1

}
= Ef

(
I{

K−1
∑K−1

k=0
w[kP ]>A

}
)

= Eg

(
I{w̄>A}

)

= EA

{
I{w̄>A} exp

[(−2Aw̄ + A2
)
/

(
2σ2/K

)]}
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Figure 6: Synthesized speech residual using the “impulse train + WGN ” model

Table 2: Theoretical PE and estimated P̂E by importance sampling

A
σ PE P̂E 95% confidence interval
3 1.6508× 10−31 1.8005× 10−31 [1.4065 2.1946]×10−31

4 1.9664× 10−54 2.0208× 10−54 [1.4851 2.5566]×10−54

5 7.6301× 10−84 7.0208× 10−84 [4.8998 9.1419]×10−84

6 9.4276× 10−120 1.1016× 10−119 [0.7480 1.4551]×10−119

where ID(x) is the indicator function, which is one if x ∈ D, and zero otherwise, Ef is the
statistical expectation w.r.t. the distribution f = N (0, σ2), Eg is the statistical expectation
w.r.t. the distribution g = N (0, σ2/K), EA is the statistical expectation w.r.t. the distribution
N (A, σ2/K), We use Monte Carlo simulation to estimate EA

{
I{w̄>A} exp

[(−2Aw̄ + A2
)
/

(
2σ2/K

)]}
,

the results are shown in Table 2, the number of experiments in Monte Carlo simulation is 1000,
the 95% confidence intervals are also included in the table. The Monte Carlo simulation results
fit well with the theoretical result (7).

5 Conclusion and Future Work

For detection of speech polarity, the speech residual signal can be modeled as impulse train plus
WGN, the optimal detector outperformes the original polarity detection algorithm by tens of
order of magnitude in term of detection error. This result is validated by Monte Carlo simulation.
It should be noted that in the above analysis, we have assumed that the parameters of the
impulse train P, A and the AR model parameters are all assumed known, in practice, these
parameters must be estimated from the speech signal, the estimation error will degrade the
detector performance. The performance loss using estimated parameters is under investigation
and will be reported in a future paper.
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