Active Learning by Learning

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University (國立台灣大學資訊工程系)

2015 IR Workshop, IIS Sinica, Taiwan
joint work with Wei-Ning Hsu, presented in AAAI 2015
About Me
Hsuan-Tien Lin

- Associate Professor, Dept. of CSIE, National Taiwan University
- Leader of the Computational Learning Laboratory
- Co-author of the textbook “Learning from Data: A Short Course” (often ML best seller on Amazon)
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
 - “Machine Learning Foundations”: www.coursera.org/course/ntumalone
 - “Machine Learning Techniques”: www.coursera.org/course/ntumltwo
Active Learning

Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (**thanks to the authors below!**) and **label them as apple/other for learning**

(APAL stands for Apple and Pear Australia Ltd)

- Dan Foy: https://flic.kr/p/jNQ55
- APAL: https://flic.kr/p/jzP1VB
- adrianbartel: https://flic.kr/p/bdy2hZ
- ANdrzej cH.: https://flic.kr/p/51DKA8
- Stuart Webster: https://flic.kr/p/9C3Ybd
- nachans: https://flic.kr/p/9XD7Ag
- APAL: https://flic.kr/p/jzRe4u
- Jo Jakeman: https://flic.kr/p/7jwtGp
- APAL: https://flic.kr/p/jzPYNr
- APAL: https://flic.kr/p/jzScif

Hsuan-Tien Lin (NTU CSIE)
Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

Mr. Roboto.

https://flic.kr/p/i5BN85

Richard North

https://flic.kr/p/bHhPkB

Richard North

https://flic.kr/p/d8tGou

Emilian Vicol

https://flic.kr/p/bpmGXW

Robert Vicol

https://flic.kr/p/pZv1Mf

Nathaniel McQueen

https://flic.kr/p/vlMf

Crystal

https://flic.kr/p/kaPYp

jfh686

https://flic.kr/p/6vjRFH

skyseeker

https://flic.kr/p/2MynV

Janet Hudson

https://flic.kr/p/7QDBbm

Rennett Stowe

https://flic.kr/p/agmnrk

Hsuan-Tien Lin (NTU CSIE)

Active Learning by Learning
unknown target function
\[f : \mathcal{X} \rightarrow \mathcal{Y} \]

training examples
\[\mathcal{D} : (x_1, y_1), \cdots, (x_N, y_N) \]
(\text{apple, +1}), (\text{cherry, +1}), (\text{banana, +1})
(\text{apple, -1}), (\text{cherry, -1}), (\text{banana, -1})

learning algorithm \(\mathcal{A} \)

final hypothesis
\[g \approx f \]

hypothesis set \(\mathcal{H} \)

batch supervised classification: learn from **fully labeled** data
Active Learning: Learning by ‘Asking’

but labeling is expensive

Protocol ↔ Learning Philosophy

- batch: ‘duck feeding’
- active: ‘question asking’ (iteratively)
 —query y_n of chosen x_n

unknown target function
$f: \mathcal{X} \rightarrow \mathcal{Y}$

labeled training examples
(\(\text{apple}, +1\)), (\(\text{orange}, +1\)), (\(\text{apple}, +1\))
(\(\text{banana}, -1\)), (\(\text{orange}, -1\)), (\(\text{apple}, -1\))

learning algorithm \mathcal{A}

final hypothesis $g \approx f$

hypothesis set \mathcal{H}

active: improve hypothesis with fewer labels (hopefully) by asking questions strategically
Pool-Based Active Learning Problem

Given
- labeled pool $\mathcal{D}_l = \{(\text{feature } x_n, \text{label } y_n \text{ (e.g. IsApple?))}\}_{n=1}^{N}$
- unlabeled pool $\mathcal{D}_u = \{\tilde{x}_s\}_{s=1}^{S}$

Goal

design an algorithm that iteratively

1. **strategically query** some \tilde{x}_s to get associated \tilde{y}_s
2. move $(\tilde{x}_s, \tilde{y}_s)$ from \mathcal{D}_u to \mathcal{D}_l
3. learn **classifier** $g^{(t)}$ from \mathcal{D}_l

and improve **test accuracy of** $g^{(t)}$ w.r.t **queries**

how to **query strategically**?
Active Learning

How to Query Strategically?

by DFID - UK Department for International Development;
licensed under CC BY-SA 2.0 via Wikimedia Commons

<table>
<thead>
<tr>
<th>Strategy 1</th>
<th>Strategy 2</th>
<th>Strategy 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ask most confused question</td>
<td>ask most frequent question</td>
<td>ask most helpful question</td>
</tr>
</tbody>
</table>

do you use a fixed strategy in practice? 😊
Active Learning

Choice of Strategy

Strategy 1: uncertainty
ask *most confused* question

Strategy 2: representative
ask *most frequent* question

Strategy 3: exp.-err. reduction
ask *most helpful* question

- **choosing** one single strategy is **non-trivial:**

- human-designed strategy **heuristic** and **confine** machine’s ability

 - can we **free** the machine 😊
 - by letting it **learn to choose** the strategies?
Our Contributions

a philosophical and algorithmic study of active learning, which ...

- allows machine to make **intelligent choice of strategies**, just like my cute daughter
- studies **sound feedback scheme** to tell machine about goodness of choice, just like what I do
- results in **promising active learning performance**, just like (hopefully) bright future of my daughter 😊

will describe **key philosophical ideas** behind our proposed approach
Online Choice of Strategy

Idea: Trial-and-Reward Like Human

by DFID - UK Department for International Development;
licensed under CC BY-SA 2.0 via Wikimedia Commons

\(K \) strategies:
\(A_1, A_2, \ldots, A_K \)

\text{try} one strategy

“goodness” of strategy as \text{reward}

two issues: \text{try} and \text{reward}
when do humans **trial-and-reward?**

gambling 😊

K strategies:

A_1, A_2, \ldots, A_K

- **try** one strategy
- "goodness" of strategy as **reward**

K bandit machines:

B_1, B_2, \ldots, B_K

- **try** one bandit machine
- "luckiness" of machine as **reward**

—will take one well-known **probabilistic bandit learner (EXP4.P)**

intelligent choice of strategy
\Rightarrow
intelligent choice of **bandit machine**
Online Choice of Strategy

Active Learning by Learning

Given: K existing active learning strategies

for $t = 1, 2, \ldots, T$

1. let EXP4.P decide strategy A_k to try
2. query the \tilde{x}_s suggested by A_k, and compute $g^{(t)}$
3. evaluate goodness of $g^{(t)}$ as reward of trial to update EXP4.P

only remaining problem: what reward?
Ideal Reward

Ideal reward after updating classifier $g^{(t)}$ by the query (x_{nt}, y_{nt}):

$$\text{accuracy} \quad \frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(x_m) \right] \quad \text{on test set} \quad \{(x_m, y_m)\}_{m=1}^{M}$$

- **test accuracy** as reward:
 area under query-accuracy curve \equiv cumulative reward

- test accuracy **infeasible** in practice
 —labeling expensive, remember? 😊

difficulty: approximate **test accuracy** on the fly
Design of Reward

Training Accuracy as Reward

\[
\frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(x_m) \right]
\]

infeasible, naïve replacement:

\[
\frac{1}{t} \sum_{\tau=1}^{t} \left[y_{n_{\tau}} = g^{(t)}(x_{n_{\tau}}) \right]
\]
on \text{labeled pool} \ \{(x_{n_{\tau}}, y_{n_{\tau}})\}_{\tau=1}^{t}

- **training accuracy** as reward:
 - training accuracy \(\approx \) test accuracy?

- not necessarily!!
 - for active learning strategy that asks **easiest** questions:
 - training accuracy **high**: \(x_{n_{\tau}} \) easy to label
 - test accuracy **low**: not enough information about **harder instances**

training accuracy:

too **biased** to approximate test accuracy
Weighted Training Accuracy as Reward

Training accuracy \(\frac{1}{t} \sum_{\tau=1}^{t} \left[y_{n_{\tau}} = g^{(t)}(x_{n_{\tau}}) \right] \) is biased, want unbiased estimator.

- **non-uniform sampling** theorem: if \((x_{n_{\tau}}, y_{n_{\tau}})\) sampled with probability \(p_{\tau} > 0\) from data set \(\{(x_{n}, y_{n})\}_{n=1}^{N}\) in iteration \(\tau\),

 weighted training accuracy \(\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} \left[y_{n_{\tau}} = g(x_{n_{\tau}}) \right] \)

 \(\approx \frac{1}{N} \sum_{n=1}^{N} \left[y_{n} = g(x_{n}) \right] \) in expectation

- with **probabilistic query** like EXP4.P:

 weighted training accuracy \(\approx \) test accuracy

weighted training accuracy: **unbiased** approx. of test accuracy on the fly
Human-Designed Criterion as Reward

(Baram et al., 2004) COMB approach:

bandit + balancedness of $g(t)$ on unlabeled data as reward

- why? human criterion that matches classifier to domain assumption
- but many active learning applications are on unbalanced data! —assumption may be unrealistic

existing strategies: active learning by acting;
COMB: active learning by acting;
ours: active learning by learning
Experiments

Comparison with Single Strategies

UNCERTAIN Best

PSDS Best

QUIRE Best

- **no single best strategy** for every data set
 —choosing/blending needed
- **ALBL** consistently matches the best
 —similar findings across other data sets

ALBL: effective in making intelligent choices
Experiments

Comparison with Other Adaptive Blending Algorithms

\[ALBL \approx COMB \]

\[ALBL > COMB \]

- **ALBL** \(> \) **ALBL-Train** generally
 - **importance-weighted** mechanism needed for correcting biased training accuracy

- **ALBL** consistently comparable to or better than **COMB**
 - **learning performance** more useful than **human-criterion**

ALBL: effective in utilizing performance
Conclusion

Active Learning by Learning

- based on **bandit learning** + **unbiased performance estimator** as reward
- effective in **making intelligent choices** —comparable or superior to the best of existing strategies
- effective in **utilizing learning performance** —superior to human-criterion-based blending

New Directions

- **open-source tool** being developed
- extending to **more sophisticated active learning problems**

Thank you! Questions?