

Computational Linguistics and Chinese Language Processing

Vol. 23, No. 1, June 2018, pp. 1-18 1

 The Association for Computational Linguistics and Chinese Language Processing

Sentiment Analysis on Social Network: Using Emoticon

Characteristics for Twitter Polarity Classification

Chia-Ping Chen, Tzu-Hsuan Tseng and Tzu-Hsuan Yang

Abstract

In this paper, we describe a sentiment analysis system implemented for the

semantic-evaluation task of message polarity classification for English on Twitter.

Our system contains modules of data pre-processing, word embedding, and

sentiment classification. In order to decrease the data complexity and increase the

coverage of the word vector model for better learning, we perform a series of data

pre-processing tasks, including emoticon normalization, specific suffix splitting,

and hashtag segmentation. In word embedding, we utilize the pre-trained word

vector provided by GloVe. We believe that emojis in tweets are important

characteristics for Twitter sentiment classification, but most pre-trained sets of

word vectors contain few or no emoji representations. Thus, we propose

embedding emojis into the vector space by neural network models. We train the

emoji vector with relevant words that contain descriptions and contexts of emojis.

The models of long short-term memory (LSTM) and convolutional neural network

(CNN) are used as our sentiment classifiers. The proposed emoji embedding is

evaluated on the SemEval 2017 tasks. Using emoji embedding, we achieved recall

rates of 0.652 with the LSTM classifier and 0.640 with the CNN classifier.

Keywords: Sentiment Analysis, Polarity Classification, Machine Learning, Neural
Network, Word Embedding.

1. Introduction

There has been huge growth in the use of social networks, such as Twitter, in recent years.

Many messages are created every day, including various topics, users’ comments and views,

or current emotions. Sentiment analysis, which predicts the polarity of a message, is one of the

research directions on Twitter. A message on Twitter is called a tweet and is allowed to be 140

characters or less. Tweets are highly colloquial. Due to the length constraint, a tweet often

 Department of Computer Science and Engineering, National Sun Yat-sen University, Taiwan

 E-mail: cpchen@cse.nsysu.edu.tw; fb74123698@gmail.com; kr60903@gmail.com

2 Chia-Ping Chen et al.

contains unofficial abbreviations, as well as emoticons and emojis. Figure 1 shows examples

of tweets.

Figure 1. Examples of tweets. Tweets tend to have informal words and syntax.

In the above examples, we can see that emojis are used frequently in Tweets. Some

emojis (like) can be considered the natural evolution of emoticons, such as :-) and :D. In

addition to facial expressions, emojis can be used for food, flags, animals, etc.

Unofficial abbreviations and emojis without corresponding word vectors in tweets can

make the sentiment classification task difficult. In this work, we find sentiment features for

these unorthodox tokens to get better results in sentiment classification.

Artificial neural networks for machine learning are mathematical models inspired by

biological neural systems. Deep learning, which is neural network models based on deep

neural networks, has been a very successful method and achieves state-of-the-art performance

in many tasks, such as NIST handwritten digit recognition (LeCun, Bottou, Bengio, & Haffner,

1998) and ImageNet image classification (Krizhevsky, Sutskever, & Hinton, 2012). It

performs well in natural language processing tasks, such as machine translation (Sutskever,

Vinyals, & Le, 2014) and handwriting recognition (Graves et al., 2009).

For sentiment analysis, deep learning-based approaches have performed well in recent

years. For example, convolution neural networks (CNN) with word embedding have been

implemented for text classification (Kim, 2014), and they have achieved state-of-the-art

results in SemEval 2015 (Severyn & Moschitti, 2015). SemEval 2017 Task 4 is sentiment

analysis in Twitter, which is further divided into five subtasks: message polarity classification

(Subtask A), topic-based message polarity classification (Subtasks B-C), and tweet

 Sentiment Analysis on Social Network: Using 3

Emoticon Characteristics for Twitter Polarity Classification

quantification (Subtasks D-E).

Most of the participants in SemEval who adopt deep learning collect millions of tweets to

train word-embedding models. The top system of SemEval 2017, which achieved 0.681 of

average recall, used 100 million unlabeled tweets to pre-train word-embedding models (Cliché,

2017). In contrast, our goal in this work is to achieve sound performance without a large

amount of external data.

In this paper, we describe our system for SemEval 2017 Task 4 (Subtask A) for message

polarity classification (Rosenthal, Farra, & Nakov, 2017). Given a message, the system

decides whether the message is of positive, negative, or neutral sentiment. We extend our

previous work on SemEval 2017 (Yang, Tseng, & Chen, 2017). Our system consists of data

pre-processing, word embedding, and classifiers. Data pre-processing includes normalization

and hashtag segmentation. We consider the importance of emojis for sentiment analysis. In

addition to using pre-trained word vectors, we train the emoji vector by the neural network.

For the classifiers, we choose RNN-based and CNN models. We have achieved average recall

rates of 0.652 with the LSTM-based classifier, and 0.640 with the CNN-based classifier.

Our contributions are described as follows.

　 We propose neural network models for emoji embedding and investigate the effects of

using emoji vectors in the classifiers. Through experiments, we find that emoji vectors can

improve the accuracy of prediction for the positive and negative classes.

 Besides adding emoji vectors in the system, data pre-processing is critical to the

improvement of the average recall rate from 0.610 to 0.652 with the LSTM classifier. Data

pre-processing is important for Twitter sentiment analysis because textual data on Twitter is

informal. In particular, the effect of hashtag segmentation is the most significant.

This paper is organized as follows. In Section 2, we describe our system, consisting of

data pre-processing, word embedding, emoji embedding, and classifiers. In Section 3, we

introduce data in experiments, network settings, and tools. In Section 4, we present the

evaluation results, along with our comments. In Section 5, we conclude and discuss future

works.

2. Related Work

There has been considerable research in the field of sentiment analysis. Past research mostly

has focused on long text. Pang, Lee and Vaithyanathan (2002) analyzed the performance on

movie reviews using machine learning algorithms and used star ratings as polarity signals in

their training data. In recent years, there have been many research projects of sentiment

analysis on social networks like Twitter. Go, Bhayani and Huang (2009) used distant learning

to acquire more sentiment data. Their training data consisted of tweets with emoticons, which

4 Chia-Ping Chen et al.

can be used as noisy labels. They constructed models with Naïve Bayes, Maximum Entropy,

and Support Vector Machines (SVM), and they concluded that SVM outperforms the other

models.

Deep learning has gained much attention in classification of Twitter text data, due to its

huge success in speech recognition and computer vision. Among the top systems of SemEval,

Severyn and Moschitti (2015) proposed a parameter initialization method for CNN. They used

an unsupervised neural language model to initialize word embeddings that were fine-tuned by

a distant supervised corpus. The pre-trained parameters were used to initialize the CNN model.

Deriu, Gonzenbach, Uzdilli, Lucchi, De Luca and Jaggi (2016) utilized large amounts of data

with distant supervision to train an ensemble of two-layer convolutional neural networks

whose predictions were combined using a random forest classifier. Cliché (2017) used CNN

models and bi-directional LSTM models. They pre-trained word embedding and fine-tuned it

using distant supervision. They trained their models on Twitter data where embedding was

fine-tuned again and finally combined several CNNs and LSTMs to get better performance.

Emojis are an important feature in tweets. Many studies have analyzed and trained

emojis, such as Zhao, Dong, Wu and Xu (2012) and Barbieri, Ronzano and Saggion (2016).

Zhao et al. (2012) built a system, which was the first system for sentiment analysis of Chinese

tweets in Weibo. They mapped 95 emojis into four categories of sentiment. Their system

employs the emojis for the generation of sentiment labels for tweets and builds an incremental

learning Naïve Bayes classifier for the categorization of four types of sentiments. Barbieri et

al. (2016) studied Twitter emojis with embedding models. They retrieved ten million tweets

posted by USA users, and they made vector models of both words and emojis using several

skip-gram word-embedding models.

3. Method

The system we implement for sentiment classification is shown in Figure 2. In data

pre-processing, we normalize data sets to decrease the data complexity and increase the

coverage of the word vector inventory. In word embedding, we utilize pre-trained word

vectors provided by GloVe (Pennington, Socher, & Manning, 2014) and we train emoji

embedding by neural networks. The models of LSTM and CNN are used as our sentiment

classifiers.

 Sentiment Analysis on Social Network: Using 5

Emoticon Characteristics for Twitter Polarity Classification

Figure 2. Our Sentiment System. We propose to add embedded emoji vectors for
better sentiment classification.

3.1 Data Pre-processing

All the data used for training the emoji embedding and for training the sentiment classification

models undergo a series of data pre-processing. First, we use a tokenizer to split a tweet into

words, emoticons, and punctuation marks. Happytokenizer1 is the tokenizer we use for text

processing. Then, we replace URLs and USERs with normalization patterns <URL> and

<USER>, respectively. All uppercase letters are converted into lowercase letters. The above

pre-processing is called basic pre-processing. Next, we perform further data pre-processing

based on basic pre-processing. The further data pre-processing is described as follows.

3.1.1 Emoticon Normalization

Tweets often contain a variety of emoticons, and some emoticons do not correspond to any

pre-trained word vector. To reduce complexity, we normalize similar emoticons to the same

token, as described in Table 1.

Table 1. Examples of emoticon normalization. We normalize similar emoticons into
four categories, which are <smile>, <sadface>, <neutralface>, and <heart>,
respectively.

Emoticon Normalization

:), (:, :-), (-:, :D, :-D, ;), =), (=, =D <smile>

:(,):, :’(,)’:, =(,)=, :-(,)-: <sadface>

:|, |:, =|, |: <neutralface>

<3 <heart>

For example, in the case of <neutralface> category, we find :|, |:, =|, |:, and then replace them

by the token <neutralface>. Thus, the emoticons are replaced by four normalized categories.

1 http://sentiment.christopherpotts.net/tokenizing.html

6 Chia-Ping Chen et al.

3.1.2 Specific Suffix Splitting

There are many specific suffixes in English words, such as children's and Amazon's. These

words may not have any corresponding word vectors and their presence increases the

vocabulary size. So, we split the specific suffixes, including 's, n't, 'll, 're, 've, 'd and 'm, to

decrease vocabulary. Moreover, the words resulted from splittingy do have corresponding

word vectors (Nabil, Atyia, & Aly, 2016).

3.1.3 Hashtag Segmentation

Hashtag often is composed of multiple words and includes emotional words. We try two ways

to split hashtags. Table 2 shows the examples of hashtag segmentation.

 Maximum Matching Segmentation

We use the vocabulary of GloVe as our dictionary containing approximately 570,000 words,

and define a regular expression for numbers and punctuation. From the beginning of a hashtag,

we split it according to the dictionary as much as possible until segmentation is finished.

 Unigram-based Segmentation

We train a unigram model with 0.6M tweets obtained from Twitter API. We do statistics of

different words in these tweets and remove Except for the letter “a” and the letter “i”, single

letters letters are removed from the unigram dictionary to avoid over-segmentation. All results

of hashtag segmentation will be split according to the dictionary, so a hashtag may have

multiple results. Then, we calculate sum of log probability of each word from each result as

segmentation score. Finally, we take the highest score as the final segmentation result.

Table 2. Examples of hashtag segmentation. A hashtag is converted to a word
sequence.

Hashtag Maximum matching Unigram-based

#windows10fail windows 10 fail windows 10 fail

#sportshalloweencostume sports Halloween costume sports Halloween costume

#thisisnotajoketweet thisis notajoke tweet this is not a joke tweet

3.2 Embedding

Since training word embedding requires a lot of time, we use the pre-trained word vector

provided by GloVe. Nevertheless, many pre-trained sets of word vectors contain few or no

emoji representations. Therefore, Barbieri et al. built skip-gram word embedding models by

mapping both words and emojis in the same vector space (Barbieri et al., 2016). Note that we

only consider emojis and do not include emoticons because emoticons already are normalized

to the normalization tokens during the data pre-processing phase. We train emoji vectors by

 Sentiment Analysis on Social Network: Using 7

Emoticon Characteristics for Twitter Polarity Classification

neural networks. Figure 3 shows the model architecture. In Figure 3, U is the weight matrix

from the input layer to the hidden layer and V is the weight matrix from the hidden layer to the

output layer. When the embedding training is finished, the weight matrix from the input layer

to the hidden layer U consists of the emoji vectors. We use pairs of an emoji and its relevant

words, including the descriptive words and the contextual words, as training examples. The

steps are described as follows.

Figure 3. The model of emoji embedding. Similar to word embedding, an emoji
vector is trained to predict neighboring word vectors.

3.2.1 Description Words

We crawled emojis and their descriptions from Unicode emoji standard,2 resulting in 9,244

description words for 2,623 emojis. Every training example consists of an emoji and a

sequence of words ݓଵ,ݓଶ, … describing that emoji. We tried two methods of producingݓ,

the training target, described as follows. Table 3 shows examples of emojis and their

descriptions.

Table 3. Examples of emojis and their description.

Emoji Description

Grinning face

Beaming face with smiling eyes

Woman running: medium skin tone

Sweat droplets

Cat face

2 http://www.unicode.org/emoji/charts/full-emoji-list.html

8 Chia-Ping Chen et al.

 Sum of the vectors of the description words

We take the sum of the individual vectors of description words as a training target, where the

word vector can be found in GloVe. The description words ݓଵ: correspond to pre-trained

word vectors ࢜ଵ: where ࢜ is a ݀ -dimensional word vector. The training target is

ൌ ∑ ࢜

ୀଵ . In this way, the number of training samples is 2,623.

 Description word splitting

We divide the description words into ݊ training examples. For example, the description of

 is grinning face, so the training examples are (, grinning) and (, face). These

description words have corresponding pre-trained word vectors. In this way, the number of

training examples is 9,244.

The size of the input layer is equal to the number of different emojis, as emojis are

represented by one-hot vectors. The size of the output layer is equal to the size of word vector,

which is 100.

3.2.2 Contextual Words

We selected tweets with emojis from the aforementioned 0.6M tweets, resulting in a set of

approximately 50K tweets. A tweet is ݓଵ,ݓଶ, … , ݁, … , where ݁ is an emoji. The networkݓ,

input is emoji ݁ as a one-hot vector, and the network output targets are the contextual words

of ݁, which is ݓଵ,ݓଶ, … ,ଵሻݓ,. Training examples are ሺ݁ݓ, ሺ݁, ,ଶሻݓ … , ሺ݁, ሻ. We collectedݓ

about 1.7M training samples.

For the output target, we tried two kinds of representations. A sparse target

representation uses a one-hot vector, while a distributed target representation uses a word

vector.

3.3 Sentiment Classification

3.3.1 LSTM Classifier

Figure 4 shows the architecture of our RNN-based classifier, which contains an input layer,

embedding layer, hidden layer, and soft-max layer.

 Sentiment Analysis on Social Network: Using 9

Emoticon Characteristics for Twitter Polarity Classification

Figure 4. The architecture of the implemented classifier based on recurrent neural
network with long short-term memory (LSTM) cells in the hidden layer.

In the input layer, each tweet is treated as a sequence of words and each word is input

into the model at every time step. In the embedding layer, each word is converted to a word

vector, where word vectors are stored in an embedding matrix provided by GloVe. In the

hidden layer, we use LSTM memory cells (Hochreiter & Schmidhuber, 1997) for the

long-range dependency. Different from the original recurrent unit, the LSTM cell contains

gates to control states. The hidden states of the first word to the second to last word in a tweet

connect to the hidden state of the next word. Only the hidden state of the last word connects to

the next (output) layer. In the soft-max layer, output values are processed by soft-max function

to get probabilities for classification.

10 Chia-Ping Chen et al.

3.3.2 CNN Classifier

Figure 5. The architecture of the implemented classifier based on convolutional
neural network (CNN).

The CNN model we use for classification is the architecture used by Kim (2014). Figure 5

shows the CNN architecture, which consists of a convolutional layer, max-pooling layer,

hidden layer, and soft-max layer.

The model input is a tweet, consisting of sequence of words ݓଵ: ∈ ࣬, where ܸ is the

vocabulary size. In order to fix the length of the tweet, we pad input text with zeros into length

݊. Each tweet ݓଵ: is represented by the corresponding word vector ݔଵ:, where ݔ is the

݀ -dimension word vector of the ݅ -th word. Input words are embedded into dense

representation through word embedding and fed into the convolutional layer. A word without

an embedding vector is represented by a zero vector. After word embedding, an input tweet is

mapped to an input matrix ܵ ∈ ࣬ൈௗ.

In the convolutional layer, kernel ܭ ∈ ࣬ௗൈ slides over the input matrix with stride

ݏ ൌ 1 and creates features ܿ.

 ܿ ൌ ݂ሺܭ ∗ ܵ:ାିଵ ܾ௩ሻ (1)

where ܾ௩ is the bias at the convolutional layer, * denotes the convolution operation, and ݂

is a nonlinear function. The feature map ݕ௩ ∈ ࣬ିାଵ is created by

 ௩ݕ ൌ ሾܿଵ, ܿଶ, … , ܿିାଵሿ (2)

We use ݇ kernels to create ݇ feature maps, which are denoted by ܻ௩ ∈ ࣬ൈሺିାଵሻ.

Then, we apply the max-pooling operation over each feature map in order to capture important

information, i.e.

 Sentiment Analysis on Social Network: Using 11

Emoticon Characteristics for Twitter Polarity Classification

,ݕ ൌ max ܻ௩,, (3)

where ݕ, ∈ ࣬ is the output after the max-pooling operation.

After the max-pooling layer, we use dropout to drop some activations for regularization

randomly in order to prevent the model from over-fitting. Finally, we use a fully connected

layer of size ݄ followed by a dense layer with soft-max function for classification.

4. Results

4.1 Data

We used the SemEval 2017 data provided by the task organizers. These data are tweets in

Twitter, which are labelled with three types of sentiment: positive, neutral, and negative. The

training data were the tweets from SemEval 2013 to SemEval 2016, excluding SemEval 2016

testing data. The development data were the tweets from SemEval 2016 testing data. The test

data were the tweets provided by the organizer of SemEval 2017. Table 4 summarizes the

statistics of the data.

Table 4. Statistics of SemEval 2017: the number of tweets in datasets.

Data Pos. Neu. Neg. Total

Train 12,844 12,249 4,609 29,702

Dev 7,059 10,342 3,231 20,632

Test 2,375 5,937 3,972 12,284

4.2 Settings

We used the pre-trained word vectors provided by GloVe, which are trained with Twitter data.

The dimension of word vectors can be 50, 100, or 200. We evaluated these dimensions with

the SemEval 2016 dataset. The 100 and 200-dimension word vectors achieved better results,

so we used 100-dimension word vectors for the SemEval 2017 tasks. We noticed that the

performance is not very sensitive to the hyper-parameter of word vector size and the number

of hidden layer units. For the CNN model, the number of filters ݇ was 50. The kernel size

was 3 ൈ 100 with stride ݏ ൌ 1 over the input matrix. Max-pooling was applied over each

feature map. After pooling, we dropped activations randomly with the probability of ൌ 0.2

and fed to the hidden layer with size ݄ ൌ 20. The hyperbolic tangent function was used as the

activation function after convolution and pooling. For the LSTM model, input size ݅ was

equal to the size of word list and the size of hidden ݄ was 50. We dropped input units for

input gates and recurrent connections with the same probability of ൌ 0.2.

Next, we explain the settings of emoji embedding training. The size of input layer was

equal to the number of emojis. For training with descriptive words, the size of the input layer

12 Chia-Ping Chen et al.

was 2,623, the size of the hidden layer was 100, and the size of the output layer was 100. Both

hidden-layer outputs and output-layer outputs went through hyperbolic tangent function, and

the loss is the mean square error.

For training with contextual words, the size of the input layer was 1,023 and the size of

the hidden layer was 100. The size of the output layer was 42,670 if the target was represented

by one-hot vector and was 100 if the target was represented by word vector. Output values

went through the soft-max function. Both hidden-layer outputs and output-layer outputs went

through the hyperbolic tangent function, and the loss is the mean square error.

All the models we used in our experiments were implemented using Keras3 with

Tensorflow4 backend.

4.3 Baseline

We participated in SemEval 2017 task 4, which is sentiment classification in Twitter (Yang et

al., 2017). There are three evaluation measures in the task, which are average recall of three

classes, average F-measure of positive and negative classes, and accuracy. The organizer

chose average recall as the primary measure because it is more robust to class imbalance

(Rosenthal et al., 2017), so we focus on this performance measure. The results of each setting

are obtained from an average of five runs of experiments. In each run, we trained our models

with the same usage of data sets, instead of the cross-validation or leave-one-out scheme.

Table 5 shows our results of SemEval 2017. We interpolated the LSTM and CNN models

to get the interpolated model for the final submission, which achieved 0.618 for average recall.

Also, we list the evaluation of LSTM and CNN model. We will take this performance as our

baseline.

Table 5. Results of baseline. Interpolation-baseline is the result of participating in
SemEval 2017. It is an interpolation of an LSTM model and a CNN model. The result
of LSTM-baseline and the result of CNN-baseline are obtained from an average of
five runs of experiments.

Model Avg. Recall Avg. F1 Accuracy

LSTM-baseline 0.610 0.575 0.615

CNN-baseline 0.584 0.548 0.583

Interpolation-baseline 0.618 0.587 0.616

3 https://keras.io
4 https://www.tensorflow.org

 Sentiment Analysis on Social Network: Using 13

Emoticon Characteristics for Twitter Polarity Classification

4.4 Comparison of Data Pre-processing

In this part, we show the classification results using different data pre-processing. We

summarize different statistics of pre-processed data, including vocabulary size, the number of

tokens in data, and coverage on word vector. Here, coverage on word vector is the proportion

of tokens with found word vectors. The word list we used was extracted from the words in the

training data, and it is equal to vocabulary size. If the word vector of a word in the word list

could not be found in GloVe, we used the zero vector for the word. Words in the testing data

but not in the word list were removed. Each LSTM or CNN model was trained with 50 epochs.

Table 6 shows the results of data pre-processing.

Table 6. Statistics of pre-processed data and results. In each pre-processing stage, we
base on basic pre-processing. “emoticon” means emoticon normalization. “suffix”
means specific suffix splitting. “hashtag*” means hashtag segmentation, where
hashtag1 is maximum matching segmentation and hashstag2 is unigram-based
segmentation.

Pre-
processing

Vocab.
Tokens Coverage Avg. Recall

Train Test Train Test LSTM CNN

Basic 38,353 691,261 218,821 0.914 0.886 0.610 0.584

Basic +
emoticon

38,316 686,565 217,321 0.916 0.886 0.615 0.584

Basic +
suffix

37,506 700,736 222,435 0.928 0.904 0.614 0.584

Basic +
hashtag1

36,429 695,654 224,562 0.924 0.932 0.622 0.590

Basic +
hashtag2

34,327 700,954 232,322 0.924 0.933 0.616 0.593

Basic +
emoticon +

suffix +
hashtag1

35,542 700,410 226,621 0.940 0.948 0.625 0.594

It can be seen that the vocabulary size decreased and the coverage on word vector

increased after data pre-processing. For the LSTM model, average recall of all pre-processed

data was higher than the basic pre-processed data, especially data with hashtag segmentation.

For the CNN model, average recall also was improved by data with hashtag segmentation.

Although hashtag with unigram-based segmentation can attain better results, its average recall

was lower than hashtag with maximum matching segmentation in the LSTM model. We think

that the segmentation dictionary we used in maximum matching was the vocabulary of GloVe,

so most words after hashtag segmentation had corresponding vectors. We combined all data

pre-processing steps finally and achieved 0.625 for the LSTM model and 0.594 for the CNN

model.

14 Chia-Ping Chen et al.

4.5 Evaluation of Emoji Vector

In this part, we explore the effect of adding the emoji vector. In order to have more

corresponding vectors in testing data, the word list we used in this experiment was the

vocabulary of GloVe. Words in the training and testing data but not in the word list were

removed. If emoji vectors were added, we added the emoji to the word list.

In order to prevent the model from over-training, we used an early stopping mechanism.

We added the development dataset as validation data during model training. If there was no

improvement in accuracy of validation data, the model stopped training. With early stopping,

each model was trained about 5-10 epochs.

The results of emoji embedding are shown in Table 7. ‘No emoji’ means that the emoji

vector was not added. ‘desc_sum’ means that the sum of the description word vectors of emoji

is the emoji vector. For training the emoji vector with description words, the sum of the

individual word vectors of description words as a training target and dividing description

words into multiple training targets are denoted as ‘desc_sum_nn’ and ‘desc_sp_nn,’

respectively. For training the emoji vector with contextual words, the training target using

one-hot vector and word vector are denoted by ‘skip gram_1H’ and ‘skip gram_vec,’

respectively.

Table 7. Results of emoji embedding. Note that the refined system with 0.652 would
have ranked 7th in SemEval 2017.

Pre-processing Basic All

Model
Early stopping

LSTM CNN LSTM CNN

vgܴܣ ଵேܨ Acc. ଵேܨ vgܴܣ Acc. vgܴܣ ଵேܨ Acc. .ଵே Accܨ vgܴܣ

No emoji 0.634 0.601 0.627 0.624 0.594 0.618 0.651 0.630 0.639 0.629 0.599 0.612

desc_sum 0.635 0.606 0.632 0.628 0.601 0.620 0.651 0.626 0.638 0.630 0.605 0.622

desc_sum_nn 0.639 0.611 0.633 0.626 0.592 0.608 0.645 0.615 0.628 0.631 0.601 0.617

desc_sp_nn 0.638 0.607 0.623 0.626 0.596 0.615 0.652 0.628 0.632 0.638 0.618 0.623

skip gram_1H 0.639 0.613 0.633 0.622 0.593 0.617 0.642 0.614 0.633 0.640 0.618 0.620

skip gram_vec 0.639 0.616 0.635 0.620 0.586 0.610 0.646 0.619 0.626 0.633 0.604 0.614

By adding the emoji vector in systems with basic pre-processing, the average recall of

the two models was mostly better than with no emoji. With all of the pre-processing, there was

no significant improvement in the LSTM model. In CNN models with all of the

pre-processing, the performance of adding emoji vectors was still better than without the

 Sentiment Analysis on Social Network: Using 15

Emoticon Characteristics for Twitter Polarity Classification

emoji vector.

We know that only tweets in test data have emoji, and there were 731 tweets with emoji,

which made about 5.9% of the test data. Furthermore, models did not learn emoji

characteristics directly during training because there were no tweets with emoji in the training

data. These are possible reasons there was no significant improvement in some cases.

In order to more clearly observe the effect of adding emoji vectors for model

classification, we only evaluated the test data with emojis in previous LSTM and CNN models.

Table 8 shows the statistics of tweets with emoji. Table 9 shows the evaluation of tweets with

emoji.

Table 8. Statistics of tweets with emoji. In our data set, only tweets in test data had
emoji.

Tweet with emoji Pos. Neu. Neg. Total

Test 310 248 173 731

Table 9. Evaluation of tweets with emoji.

Pre-processing Basic All

Model
Early stopping

LSTM CNN LSTM CNN

Avgܴ ଵேܨ Acc. ଵேܨ vgܴܣ Acc. vgܴܣ ଵேܨ Acc. .ଵே Accܨ vgܴܣ

No emoji 0.621 0.665 0.638 0.621 0.661 0.630 0.644 0.696 0.656 0.624 0.679 0.637

desc_sum 0.636 0.682 0.639 0.611 0.651 0.605 0.648 0.701 0.651 0.615 0.661 0.617

desc_sum_nn 0.629 0.665 0.637 0.601 0.640 0.616 0.633 0.679 0.650 0.617 0.669 0.635

desc_sp_nn 0.599 0.639 0.614 0.606 0.647 0.617 0.630 0.682 0.645 0.624 0.683 0.635

skip gram_1H 0.632 0.666 0.636 0.604 0.641 0.612 0.638 0.685 0.648 0.634 0.692 0.643

skip gram_vec 0.611 0.637 0.624 0.591 0.622 0.608 0.627 0.670 0.649 0.619 0.665 0.636

The results show that the effect of adding emoji is not obvious. From our observation on

the performance of the three classes, the addition of emoji vectors decreases the prediction of

neutral class dramatically, but increases the prediction of positive and negative classes.

Besides, we found that emoji vectors are more similar to each other than to the word vectors in

the embedding space. Thus, they can contribute supplementary information for sentiment

analysis.

16 Chia-Ping Chen et al.

5. Conclusion

We implemented our sentiment analysis system for sentiment analysis of Twitter data

organized in SemEval 2017. This system consists of data pre-processing, word and emoji

embedding, and classifier. From our observation, the data complexity decreases after data

pre-processing with improved performance on classification, especially with hashtag

segmentation. We found that adding emoji vectors can improve the performance on

classification, especially for CNN models, and model training with an early stopping

mechanism can prevent the model from over-training.

In data pre-processing, we process data with basic pre-processing and all pre-processing,

including emoticon normalization, specific suffix splitting, and hashtag segmentation. In word

embedding, we train emoji embedding with the descriptive words or the contextual words of

emojis. For our models, we set the vocabulary of GloVe as the word list of models instead of

the vocabulary in training data and validation data. In addition, we used an early stopping

mechanism to train our models. Our system achieved 0.652 for LSTM model and 0.640 for

CNN model, which would have ranked 7th in SemEval 2017.

Regarding future works, we hope to get closer in performance to the leaders on the task

leader-board. As mentioned in Section 4.5, the models did not learn emoji characteristics

directly during training. Thus, we want to collect tweets with emojis for training and do

further evaluation on our models. We also will try the fine-tuned word vector and make it

suitable for sentiment classification.

Reference

Barbieri, F., Ronzano, F., & Saggion, H. (2016). What does this Emoji Mean? A Vector Space
Skip-Gram Model for Twitter Emojis. In Proceedings of the LREC 2016.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P., ... Strzalkowski,
T. (1991). A Procedure for Quantitatively Comparing the Syntactic Coverage of English
Grammars. In Proceedings of the Workshop on Speech and Natural language (HLT ’91),
306-311. doi: 10.3115/112405.112467

Cliché, M. (2017). BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs
and LSTMs. In Proceedings of the 11th International Workshop on Semantic Evaluation
(SemEval 2017). doi: 10.18653/v1/S17-2094

Deriu, J., Gonzenbach, M., Uzdilli, F., Lucchi, A., De Luca, V., & Jaggi, M. (2016).
SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of
Convolutional Neural Networks with Distant Supervision. In Proceedings of the 10th
International Workshop on Semantic Evaluation (SemEval 2016), 1124-1128. doi:
10.18653/v1/S16-1173

 Sentiment Analysis on Social Network: Using 17

Emoticon Characteristics for Twitter Polarity Classification

Go, A., Bhayani, R., & Huang, L. (2009). Twitter Sentiment Classification using Distant
Supervision. CS224N Project Report, Stanford, 1(12).

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009).
A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE
transactions on pattern analysis and machine intelligence, 31(5), 855-868. doi:
10.1109/TPAMI.2008.137

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 1746-1751.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with Deep
Convolutional Neural Networks. In Advances in neural information processing systems
(NIPS'12), 1097-1105.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Applied to
Document Recognition. In Proceedings of the IEEE, 86(11), 2278-2324. doi:
10.1109/5.726791

Nabil, M., Atyia, A., & Aly, M. (2016). CUFE at SemEval-2016 Task 4: A Gated Recurrent
Model for Sentiment Classification. In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval 2016), 52-57. doi: 10.18653/v1/S16-1005

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment Classification using
Machine Learning Techniques. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing (EMNLP '02), 10, 79-86. doi:
10.3115/1118693.1118704

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1532-1543. doi: 10.3115/v1/D14-1162

Rosenthal, S., Farra, N., & Nakov, P. (2017). SemEval-2017 Task 4: Sentiment Analysis in
Twitter. In Proceedings of the 11th International Workshop on Semantic Evaluation
(SemEval 2017), 502-518.

Severyn, A., & Moschitti, A. (2015). UNITN: Training Deep Convolutional Neural Network
for Twitter Sentiment Classification. In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), 464-469. doi: 10.18653/v1/S15-2079

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural
Networks. In Advances in neural information processing systems (NIPS'14), 3104-3112.

Yang, T. H., Tseng, T. H., & Chen, C. P. (2017). deepSA at SemEval-2017 Task 4:
Interpolated Deep Neural Networks for Sentiment Analysis in Twitter. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval 2017), 616-620. doi:
10.18653/v1/S17-2101

18 Chia-Ping Chen et al.

Zhao, J., Dong, L., Wu, J., & Xu, K. (2012). Moodlens: an Emoticon-based Sentiment
Analysis System for Chinese Tweets. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD '12),
1528-1531. doi: 10.1145/2339530.2339772

