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Abstract 

This paper investigates the appropriateness of using lexical cohesion analysis to 
assess Chinese readability. In addition to term frequency features, we derive 
features from the result of lexical chaining to capture the lexical cohesive 
information, where E-HowNet lexical database is used to compute semantic 
similarity between nouns with high word frequency. Classification models for 
assessing readability of Chinese text are learned from the features using support 
vector machines. We select articles from textbooks of elementary schools to train 
and test the classification models. The experiments compare the prediction results 
of different sets of features. 
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1. Introduction 

Readability of an article indicates its level in terms of reading comprehension of children in 
general. Readability assessment is a process that measures the reading level of a piece of text, 
which can help in finding reading materials suitable for children. Automatic readability 
assessment can significantly facilitate this process. There are other applications of automatic 
readability assessment such as the support of building a web search engine that can distinguish 
the reading levels of web pages (Eickhoff, Serdyukov, & de Vries, 2010; Miltsakaki & Troutt, 
2008) and the incorporation into a text simplification system (Aluisio, Specia, Gasperin, & 
Scarton, 2010). Traditional measures of text readability focus on vocabulary and syntactic 
aspects of text difficulty, but recent work tries to discover the connections between text 
readability and the semantic or discourse structure of texts (Feng, Elhadad, & Huenerfauth, 
2009; Pitler & Nenkova, 2008). 

Most of the existing work on automatic readability assessment is conducted for English 
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text. In contrast, research on readability assessment for Chinese text is still in its initial stage. 
This paper investigates the appropriateness of using lexical cohesion analysis to improve the 
performance of Chinese readability assessment. More specifically, we build lexical chains, 
which are sequences of semantically related terms, in an article to represent the lexical 
cohesive structure of texts, and then derive features from the result of lexical chaining to 
capture the lexical cohesive information. Consisting of term frequency features and lexical 
chain features, various combinations of features are evaluated for generating prediction 
models on Chinese readability using support vector machines (SVMs). The prediction models 
are trained and tested on articles selected from textbooks of elementary schools in Taiwan. 
The results are compared for different sets of features. 

This paper is organized as follows. Section 2 introduces related work in readability 
assessment and lexical cohesion analysis. Section 3 discusses the research methodology of our 
analysis, including problem definition, text processing, feature deriving, and prediction model 
building. Section 4 presents the experiments and the experimental results. Section 5 gives 
conclusions and directions for future work. 

2. Related Work 

This section briefly surveys existing work in the areas of readability assessment and lexical 
cohesion analysis. 

2.1 Readability Assessment 
Traditional readability formulae for English are based on shallow features such as average 
sentence length and average number of syllables per word to approximate syntactic and 
vocabulary difficulty in text (Kincaid, Fishburne Jr., Rogers, & Chissom, 1975; McLaughlin, 
1969). However, this kind of measure makes strong assumptions about text difficulty and may 
not be always reliable. 

With the growth of computational power, researchers began to have the ability to use 
word frequency as a better measure of word difficulty (Chall & Dale, 1995; Stenner, 1996). 
Word frequency information can be used in two ways. One is to maintain lists of common and 
rare words and to use the percentage of words in the article that are present or absent in the 
lists as features to measure the reading difficulty of that article (Chall & Dale, 1995; Lin, Su, 
Lai, Yang, & Hsieh, 2009; Schwarm & Ostendorf, 2005). The other is to compute the numbers 
of occurrences of words from a corpus and to use the computed word frequencies as features 
to measure the reading difficulty (Stenner, 1996). The effects of both methods rely on careful 
choice of corpus used to generate the word lists and frequency information, however, the 
second method is more flexible in that it can be incorporated into other models such as the 
term frequency-inverse document frequency (TF-IDF) scheme. 
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Some researchers suggest that text readability can be measured by factors in semantic 
aspect in addition to vocabulary and syntactic ones. Aluisio et al. (2010) consider the 
ambiguity ratio of terms for each part-of-speech (POS) as a feature for assessing text 
readability in Portuguese. Feng, Jansche, Huenerfauth, & Elhadad (2010) use some features 
inspired by cognitive linguistics to measure text readability, such as the number of named 
entities and the distribution of lexical chains in an article. 

Some Chinese-specific factors, such as radical familiarity, number of strokes, geometry 
or shape of characters, are also considered (Lau, 2006). However, it is unclear whether these 
character-level features can truly benefit the readability assessment on Chinese text. Recently, 
machine learning based approaches also have been proposed for accessing Chinese readability 
(Chen, Tsai, & Chen, 2011; Sung, Chang, Chen, Cha, Huang, Hu, & Hsu, 2011). 

2.2 Lexical Cohesion Analysis 
Two properties of texts are widely used to indicate the quality of a text, coherence and 
cohesion. According to Morris and Hirst (1991), coherence refers to the fact that there is sense 
in a text, while cohesion refers to the fact that elements in a text tend to hang together. The 
former is an implicit quality within the text, whereas the latter is an explicit quality that can be 
observed through the text itself. Observing the interaction between textual units in terms of 
these properties is a way of analyzing the discourse structure of texts (Stokes, 2004). 
Discourse structure of a text is sometimes subjective and may require knowledge from the real 
world in order to truly understand the text coherence. However, according to Hasan (1984), 
analyzing the degree of interaction between cohesive chains in a text can help the reader 
indirectly measure the coherence of a text. Such cohesion analysis is more objective and less 
computationally expensive. 

Halliday and Hasan (1976) classify cohesion into five types: (1) conjunction, (2) 
reference, (3) lexical cohesion, (4) substitution, and (5) ellipsis. Among these types, lexical 
cohesion is the most useful one and is the easiest to identify automatically since it requires 
less implicit information behind the text to be discovered (Hasan, 1984). Lexical cohesion is 
defined as the cohesion that arises from semantic relationships between words (Morris & Hirst, 
1991). Halliday and Hasan (1976) further define five types of lexical cohesive ties in text: (1) 
repetition, (2) repetition through synonymy, (3) word association through specialization/ 
generalization, (4) word association through part-whole relationships, and (5) word 
association through collocation. All of the semantic relationships mentioned above except for 
collocation can be obtained from lexicographic resources such as a thesaurus. The collocation 
information can be obtained by computing word co-occurrences from a corpus or be captured 
using an n-gram language model with n > 1. 
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Lexical chaining is a technique that is widely used as a method to represent lexical 
cohesive structure of a text (Stokes, 2004). A lexical chain is a sequence of semantically 
related words in a passage, where the semantic relatedness between words is determined by 
the above-mentioned lexical cohesive ties usually with the help of a lexicographic resource 
such as a thesaurus. Lexical chains have been used to support a wide range of natural language 
processing tasks including word sense disambiguation, text segmentation, text summarization, 
topic detection, and malapropism detection. 

Different lexicographic resources capture different subset of the lexical cohesive ties in 
text. Morris and Hirst (1991) use Roget’s thesaurus to find cohesive ties between words in 
order to build lexical chains. WordNet (Fellbaum, 1998) is an online lexical database and has 
predominant use in information retrieval and natural language processing tasks, including 
lexical chaining. The major relationship between words in WordNet is synonymy, and other 
types of relationships such as hypernymy and hyponymy are defined among synsets, sets of 
synonymous words, forming a semantic network of concepts. 

HowNet is a lexical database for Chinese words developed by Dong (n.d.). The idea of 
HowNet is to use a finite set of primitives to express concepts or senses in the world. The 
whole set of primitives are defined in a hierarchical structure based on their hypernymy and 
hyponymy relationships. Each sense of a word is defined in a dictionary of HowNet using a 
subset of the primitives. HowNet so far has two major versions: the 2000 version and the 2002 
version. The 2000 version defines a word sense by a flat set of primitives with some relational 
symbols that determine the relation between the primitive and the target word sense. On the 
other hand, the 2002 version of HowNet uses a nesting grammar to define a word sense. A 
definition consists of primitives and a framework. The framework organizes the primitives 
into a complete definition. Dai, Liu, Xia, & Wu (2008) propose a method to compute lexical 
semantic similarity between Chinese words using the 2002 version of HowNet. For traditional 
Chinese, E-HowNet (Extended HowNet) is a lexical semantic representation system 
developed by Academia Sinica in Taiwan (CKIP Group, 2009). It is similar to the 2002 
version of HowNet with the following major differences: (1) Word senses (concepts) are 
defined by not only primitives but also any well-defined concepts and conceptual relations, (2) 
Content words, function words, and phrases are represented uniformly, and (3) The 
incorporation of functions as a new type of primitive. An example of word sense definition is 
shown in Figure 1. Due to the first major difference mentioned above, a word sense definition 
may contain another well-defined word sense, such as “大學” (university, college) in the 
example. A bottom level expansion of the definition can be obtained by expanding all 
well-defined concepts in the top level definition, as shown in Figure 2. 
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Figure 1. Top level definition of a word sense in E-HowNet. 

 
Figure 2. Bottom level expansion of the definition of a word sense in E-HowNet. 

It has been suggested that coherent texts are easier to read (Feng et al., 2010), and some 
previous studies have used lexical-chain-based features to assist in readability assessment of 
English text (Feng et al., 2009; Feng et al., 2010). Some other ways of modeling text 
coherence are also used for readability assessment, such as the entity-grid representation of 
discourse structure and coreference chains (Barzilay & Lapata, 2008; Feng et al., 2009; Pitler 
& Nenkova, 2008). However, none of these discourse-based factors are tested on Chinese text 
for estimating readability. In this paper, we evaluate a combination of term frequency features 
and lexical chain features for generating classification models on Chinese readability. 

3. Assessing Readability using SVM 

This section presents the methodology adopted for assessing readability of Chinese text using 
SVM. We first explain the problem of readability assessment, basic concepts of SVM 
classification, and the system design. Then we describe how we conduct the text processing 

教授   N   {human|人: 
                domain={education|教育}, 
                predication={teach|教: 
                              agent={~} 
                           }, 
                location={InstitutePlace|場所: 
                              domain={education|教育}, 
                              telic={or({study|學習: 
                                           location={~} 
                                      }, 
                                      {teach|教: 
                                           location={~} 
                                      } 
                                     ) 
                                   }, 
                              qualification={HighRank|高等} 
                        } 
           } 

教授   N   {老師: 
                location={大學}} 
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step, followed by the features we use for representing each article in the corpus. Finally, we 
discuss the performance measures used in the experiments. 

3.1 Problem Definition 
Various types of prediction models have been tested on the task of readability assessment in 
previous research (Aluisio et al., 2010; Heilman, Collins-Thompson, & Eskenazi, 2008), 
including classification and regression models. Since several studies obtain better results when 
using SVM classification than regression models (Feng et al., 2010; Petersen & Ostendorf, 
2009; Schwarm & Ostendorf, 2005), in this paper we treat the problem of Chinese readability 
assessment as a classification task where SVM is used to build classifiers that predict the 
reading levels of given texts. 

Readability can be classified according to grade levels, but the difference between 
adjacent grades may be insignificant, which makes the classification result less accurate. More 
importantly, grade-level readability is too fine for many applications and a broader range of 
readability level is more practical. For example, the U.S. government surveyed over 26,000 
individuals aged 16 and older and reported data with only five levels of literacy skills 
(National Center for Education Statistics, 2002). Therefore, we divide reading skills of 
elementary school students into three levels: lower grade, middle grade, and higher grade, 
where lower grade corresponds to the first and second grade levels, middle grade corresponds 
to the third and fourth grade levels, and higher grade corresponds to the fifth and sixth grade 
levels. 

In this paper, we try to evaluate different combinations of features for predicting the 
reading level of a text written in traditional Chinese as suitable for lower grade or middle 
grade. We will build one prediction model for lower grade level and another prediction model 
for middle grade level. These binary SVM classifiers can be combined to solve the multiclass 
problem of predicting the reading level of an article (Duan & Keerthi, 2005; Hsu & Lin, 
2002). 

While most studies on readability assessment view the reading levels as discrete classes, 
we think readability is continuous. That is, an article that is suitable for students of a certain 
level must also be comprehensible for students of higher levels. Similarly, if a student can 
understand an article of a certain reading level, he/she must also be able to understand any 
article of a lower reading level. Therefore, when building classifiers for lower grade, we use 
articles of grades 1 and 2 as positive data, while the others are negative data. When building 
classifiers for middle grade, articles of grade 1 through grade 4 are used altogether as positive 
data, while those of higher grade levels are used as negative data.  
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3.2 Text Processing 
After the data set is collected, each article is undergone a word segmentation process as a 
pre-processing step before deriving features from the texts. Word segmentation is done using a 
word segmentation system provided by Academia Sinica (CKIP Group; n.d.). The 
segmentation result is stored in XML format, where POS-tags are attached to all words and 
sentence boundaries are marked. 

It is reported by Yang and Petersen (1997) that chi-square test (χ2) performs better than 
other feature selection methods such as mutual information and information gain in automatic 
text classification. Therefore, we use chi-square test to evaluate the importance of terms in the 
corpus with respect to their discriminative power among reading levels. The chi-square test is 
used to test the independence of two events, which, in feature selection, are the occurrence of 
the term and the occurrence of the class. Higher chi-square test value indicates higher 
discriminative power of the term to the classes. For each prediction model, we compute 
chi-square test value for each term in the corpus. Such information will benefit our feature 
derivation process described below. We do not perform stop word removal and stemming 
because Collins-Thompson and Callan (2005) report that these processes may harm the 
performance of classifier on lower grade levels. 

3.3 Feature Deriving 
The use of term frequencies as the primary information for assessing Chinese readability has 
been investigated (Chen, Tsai, & Chen, 2011), where TF-IDF values of the terms with high 
discriminative power are used as features for SVM classification. This paper investigates the 
appropriateness of using lexical cohesion analysis to improve the performance of Chinese 
readability assessment. Therefore, we build lexical chains for both the training and testing 
documents and deriving features from the lexical chains to capture the lexical cohesive aspect 
of the texts. 

A general algorithm for generating lexical chains is shown in Figure 3, which is a 
simplified version of that proposed by Morris and Hirst (1991) as described in (Stokes, 2004). 
The chaining constraints in the algorithm are highly customizable and are the key to the 
quality of the generated lexical chains. The allowable word distance constraint is based on the 
assumption that relationships between words are best disambiguated with respect to the words 
that lie nearest to each other in the text. The semantic similarity is the most important factor 
that determines term relatedness and is generally based on any subset of the lexical cohesive 
ties mentioned above. Figure 4 shows an example of the lexical chaining result. 
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Figure 3. A general lexical chaining algorithm. 

 
Figure 4. An example of lexical chaining result. 

Original Text: 
  在都會區房價飆高之時，銀行業整體壞帳率創下歷史新低，業界人士對此相當

擔心，房價看來將持續疲軟到明年第 1 季，近 2 年承作的房貸物件將無上漲空間，尤

其是泛公股行庫的整批房貸，多數是在「升緩、跌快」的市郊區，亦是銀拍屋的集中

地，若明年房貸呆帳湧現，恐成為銀行業系統性風險爆發的最大來源。 

為避免壞帳爆增牽連銀行的獲利，國銀和消金外銀間正默默建立共識，絕對不能以「衝

業務」的理由，在房貸市場推銷低利產品，不單純是業者配合央行的特別監管，主要

是台灣金融業再也經不起龐大虧損。 

 銀行業的「壞年」定義，意指容易發生貸款壞帳的條件氛圍，最常見的狀況即

現階段的房價漲、投資氣氛濃；其相反即是「好年」，如全球金融海嘯期間或 SARS
期間，雖然房市冷、價格縮，有能力消費或擔保融貸的消費者卻都是「百中選一」的

信用良好者，從銀行取得房貸的標的，對成數不奢望，還款時間卻往往超前計畫的 50
％以上，銀行鮮少因此發生壞帳。 

根據金管會統計，目前本國銀行的壞帳持續改善，整體銀行平均逾放比在歷史

低點的 0.96％，完全擺脫多年前動輒 4 個百分點的可怕記錄。銀行業者認為，融貸逾

放的來源有 2 大項目，信用卡和房地產，前者經常維持在 2-3％之間，後者則因貸出

利率僅 2％，銀行能夠獲利的空間很小，長期以來平均逾放率在 1％，實在經不起任

何房價超跌的折損衝擊。 

房貸圈目前存有一種默認的共識，泛公股行庫的三商銀和民營銀行的中信銀，

不該帶頭促銷房貸產品，而消金外銀則繼續強化個人徵信，從風險管控著手，多管道

降低「壞年」留下的逾放壓力。 

Derived Lexical Chains: 
lexical chain 1: (1)銀行業-3 (2)銀行業-25 (3)業務-34 (4)銀行業-45 (5)金融-59 
lexical chain 2: (1)整體-4 (2)物件-14 (3)期間-61 (4)期間-62 (5)時間-74 (6)目前-79 (7)整

體-82 (8)前者-94 (9)後者-95 (10)目前-104 
lexical chain 3: (1)成數-73 (2)百分點-86 (3)利率-96 
lexical chain 4: (1)系統性-26 (2)來源-28 (3)條件-50 (4)氛圍-51 (5)狀況-52 (6)氣氛-56 

(7)價格-64 (8)能力-65 (9)信用-68 (10)標的-72 (11)來源-90 (12)壓力-118 

Choose a set of highly informative terms for chaining, t1, t2, …, tn.  
The first candidate term in the text, t1, becomes the head of the first chain, c1. 
For each remaining term ti do 
 For each chain cm do 
  If the chain is most strongly related to ti with respect to allowable word 
   distance and semantic similarity 
  Then ti becomes a member of cm, 

Else ti becomes the head of a new chain. 
 End for 
End for 
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The algorithm is adopted in this paper for the construction of lexical chains. We select 
nouns in the balanced corpus created by Academia Sinica (CKIP Group, 2010) with word 
frequency higher than a given threshold as candidate terms for lexical chaining. We apply the 
method proposed by Dai et al. (2008) to compute semantic similarity between words using 
E-HowNet instead of HowNet as the lexical database. The difference is that the primitives of 
function type are treated as descriptors. Let P and Q be two word senses and the number of 
modifying primitives of P is less than that of Q. The semantic similarity between P and Q is 
computed by Equation 1,  

   0 0

( , ) ( , )
max ( ( , ))

                    

                  

i ji P j Q

Sim P Q Sim P Q
Sim P Q

P

S T
S T

α

β

γ

≤ < ≤ <

′ ′= ×

+ ×

+ ×
+

∑

∩

                     (1) 

where P' and Q' are the primary primitives of P and Q, respectively, |P| and |Q| are the 
numbers of modifying primitives in their respective word senses, S and T are the sets of 
descriptors of frameworks of P and Q, respectively, |S∩T| is the number of common 
descriptors of S and T, |S| and |T| are the numbers of descriptors in S and T, and α, β, and γ are 
the relative weights of the three parts. 

After constructing lexical chains, we derive five features from the lexical chains for each 
article. The five features are the number of lexical chains, the average length of lexical chains, 
the average span of lexical chains, the number of lexical chains with span longer than the half 
length of the article, and the average number of active chains per word. The features are 
normalized by dividing the article length. Table 1 shows the lexical chain features and their 
representing codes used in this paper. 

Table 1. List of lexical chain features. 

Code Feature 

lc-1 Number of lexical chains  

lc-2 Average length of lexical chains  

lc-3 Average span of lexical chains  

lc-4 Number of long lexical chains  

lc-5 Average number of active chains per word 

3.4 SVM Classification 
We apply support vector machines (SVM) as the modeling technique for our classification 
problem. The goal of an SVM, which is a vector-space-based large margin classifier, is to find 
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a decision surface that is maximally far away from any data point in the two classes. When 
data in the input space (X) cannot be linearly separated, we transform the data into a 
high-dimensional space called the feature space (F) using a function ψ: X→F so that the data 
are now linearly separable. Then in the feature space we find a linear decision function that 
best separates the data into two classes. An SVM toolkit, LIBSVM (Chang & Lin, n.d.), is 
used for building prediction models. When training the prediction model for each reading 
level, texts belonging to that reading level are used as positive data, while the rest of the texts 
are used as negative data. We follow the procedure suggested by Hsu, Chang, & Lin (2010) 
including the use of radial basis function kernel, scaling, and cross-validation. 

3.5 Evaluation 
In this paper, we use precision, recall, F-measure, and accuracy to evaluate the learned 
prediction models. For the test data, we use the same procedure for text processing and feature 
deriving. Correct prediction refers to the agreement between the predicted reading level and 
the original reading level. We compute the following quantities: true positive (TP) is the 
number of articles correctly classified as positive, false negative (FN) is the number of 
positive articles incorrectly classified as negative, true negative (TN) stands for the number of 
articles correctly classified as negative, and false positive (FP) refers to the number of 
negative articles incorrectly classified as positive. Precision, recall, F-measure, and accuracy 
are defined as follows. 

Precision  TP
TP FP

=
+

                                               (2) 

Re call  TP
TP FN

=
+

                                                 (3) 

Precision RecallF measure = 2
Precision+Recall

×
− ×                                     (4) 

 Accuracy = TP TN
TP FP TN FN

+
+ + +

                                       (5) 

We will test on different sets of features to find the best feature combination for training 
the prediction models. 

4. Experiments 

In this section we present our experiment setup and the results of the experiments on the 
textbooks corpus using different feature combinations. 
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4.1 Experiment Environment 
The program modules for the experiments are written in Java programming language running 
on a PC with Microsoft Windows environment, Intel Core 2 Quad CPU, and 2GB of RAM. 
The corpus used as empirical data is stored in a Microsoft Access database. The lexicographic 
resources used for lexical semantic similarity computation in the experiments are stored as 
pure-text files in CSV format. LIBSVM is used for learning and testing SVM prediction 
models. 

4.2 Empirical Data 
The corpus used as empirical data consists of articles selected from the textbooks of 
elementary schools in Taiwan. We collect the digital versions of the textbooks of three 
subjects, Mandarin, Social Studies, and Life Science, for all of the six grade levels from 
publishers Nan I and Han Lin, resulting in a total number of 740 articles. Table 2 shows 
details of the collected data set. 

Table 2. Summary of the textbooks corpus. 

Reading 
Level 

Grade 
Level Mandarin Social 

Studies Life Science No. of 
Articles 

lower 
1st grade 42 0 73 115 

2nd grade 56 0 55 111 

middle 
3rd grade 61 53 0 114 

4th grade 67 50 0 117 

higher 
5th grade 83 58 0 141 

6th grade 88 54 0 142 

Total 397 215 128 740 

4.3 Experiment Design 
In each experiment, we use one set of features with a fixed parameter setting and target a 
certain grade level. We equally divide the corpus into five data sets to support 5-fold cross 
validation, and we present the average precision, recall, F-measure, and accuracy of the five 
folds. 

Since the textbooks corpus does not contain articles beyond elementary school levels, we 
only build prediction models for lower grade and middle grade. For convenience, we denote 
feature sets by a string with special syntax. Feature types are indicated in the string by the 
abbreviation of that feature type. For example, “lc” refers to the lexical chain feature type and 
“tf” refers to the TF-IDF feature type. Options of a feature type are indicated in the string by a 
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dash followed by the code name for that option, attached to the end of the feature type 
indicator. 

4.4 Experiments on Lexical Chain Features 
To test the capability of lexical chain features on Chinese readability assessment, the lexical 
chain features listed in Table 1 are used and the results are shown in Table 3 and Table 4. 

Table 3. Result of classifier for lower grade using lexical chain only. 

Feature set Precision Recall F-measure Accuracy 

lc-1-2-3-4-5 0.76 0.57 0.65 0.81 

Table 4. Result of classifier for middle grade using lexical chain only.  

Feature set Precision Recall F-measure Accuracy 

lc-1-2-3-4-5 0.70 0.83 0.76 0.68 

4.5 Comparison with TF-IDF Features 
It is interesting to see whether incorporating a small number of TF-IDF features into lexical 
chain features can produce the same or even better results. We first use TF-IDF features 
generated from top 50 to top 500 terms to produce classifiers for lower grade. The precision, 
recall, F-measure, and accuracy of the classifiers using different number of TF-IDF features 
are shown in Table 5. Then, we add the five lexical chain features to the TF-IDF feature sets 
and repeat the same experiments. Their precision, recall, F-measure, and accuracy values are 
shown in Table 6. Figure 5 illustrates line graphs generated from F-measure values of the two 
tables, from which we find that the overall performance is improved for lower grade classifiers 
when using a combination of TF-IDF features and lexical chain features. 

Table 5. Result of classifier for lower grade using TF-IDF features only. 

Feature set Precision Recall F-measure Accuracy 

tf-top50 0.78 0.87 0.82 0.88 

tf-top100 0.81 0.86 0.83 0.89 

tf-top200 0.80 0.89 0.84 0.90 

tf-top300 0.82 0.89 0.85 0.90 

tf-top400 0.86 0.89 0.87 0.92 

tf-top500 0.84 0.89 0.87 0.92 
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Table 6. Result of classifier for lower grade using lexical chain and TF-IDF. 

Feature set Precision Recall F-measure Accuracy 

lc-1-2-3-4-5 + tf-top50 0.85 0.85 0.85 0.91 

lc-1-2-3-4-5 + tf-top100 0.83 0.87 0.85 0.91 

lc-1-2-3-4-5 + tf-top200 0.90 0.83 0.86 0.92 

lc-1-2-3-4-5 + tf-top300 0.95 0.91 0.93 0.95 

lc-1-2-3-4-5 + tf-top400 0.93 0.93 0.93 0.96 

lc-1-2-3-4-5 + tf-top500 0.93 0.89 0.91 0.95 

 
Figure 5. Result of classifier for lower grade. 

The same set of experiments is conducted for the middle grade classifiers. Precision, 
recall, F-measure, and accuracy values of classifiers generated from TF-IDF features and the 
combination of TF-IDF and lexical chain features are shown in Table 7 and Table 8, 
respectively. The line graphs of F-measure values are shown in Figure 6, where the combined 
TF-IDF and lexical chain features generate the same or better F-measure in all cases. 
Therefore, incorporating a small number of TF-IDF features into lexical chain features is 
recommended for middle grade classifiers. 
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Table 7. Result of classifier for middle grade using TF-IDF features only. 

Feature set Precision Recall F-measure Accuracy 

tf-top50 0.81 0.88 0.84 0.79 

tf-top100 0.81 0.90 0.85 0.81 

tf-top200 0.83 0.92 0.87 0.83 

tf-top300 0.86 0.90 0.88 0.84 

tf-top400 0.82 0.92 0.87 0.83 

tf-top500 0.82 0.95 0.88 0.84 

Table 8. Result of classifier for middle grade using lexical chain and TF-IDF. 

Feature set Precision Recall F-measure Accuracy 

lc-1-2-3-4-5 + tf-top50 0.82 0.87 0.84 0.80 

lc-1-2-3-4-5 + tf-top100 0.84 0.89 0.86 0.82 

lc-1-2-3-4-5 + tf-top200 0.87 0.88 0.88 0.84 

lc-1-2-3-4-5 + tf-top300 0.89 0.87 0.88 0.85 

lc-1-2-3-4-5 + tf-top400 0.83 0.93 0.88 0.84 

lc-1-2-3-4-5 + tf-top500 0.83 0.93 0.88 0.84 

 

 

Figure 6. Result of classifier for middle grade. 
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5. Conclusions 

This paper focuses on evaluating the effect of lexical cohesion analysis, more specifically, the 
effect of features based on lexical chains and term frequency, on the performance of 
readability assessment for Chinese text. The experiments produce satisfactory results on the 
textbooks corpus. Combining lexical chain and TF-IDF features usually produces better 
results, suggesting that both term frequency and lexical chain are useful features in Chinese 
readability assessment. 

Future work can be done to have more articles annotated with reading levels or resort to 
other types of corpora where reading levels are inherent. On the other hand, lexical cohesion is 
only one of several aspects of text cohesion, and other aspects of text cohesion may also have 
some impact on the task of readability assessment. Several existing models of text cohesion, 
such as Coh-metrix and entity grid representation, try to model other aspect of text cohesion 
and have been extensively used in other natural language processing tasks such as writing 
quality assessment. Future work can be done to verify whether these models can benefit the 
task of readability assessment for Chinese text. 
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