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Abstract 

Due to abundant resources not always being available for resource-limited 
languages, training an acoustic model with unbalanced training data for 
multilingual speech recognition is an interesting research issue. In this paper, we 
propose a three-step data-driven phone clustering method to train a multilingual 
acoustic model. The first step is to obtain a clustering rule of context independent 
phone models driven from a well-trained acoustic model using a similarity 
measurement. For the second step, we further clustered the sub-phone units using 
hierarchical agglomerative clustering with delta Bayesian information criteria 
according to the clustering rules. Then, we chose a parametric modeling technique 
-- model complexity selection -- to adjust the number of Gaussian components in a 
Gaussian mixture for optimizing the acoustic model between the new phoneme set 
and the available training data. We used an unbalanced trilingual corpus where the 
percentages of the amounts of the training sets for Mandarin, Taiwanese, and 
Hakka are about 60%, 30%, and 10%, respectively. The experimental results show 
that the proposed sub-phone clustering approach reduced relative syllable error rate 
by 4.5% over the best result of the decision tree based approach and 13.5% over the 
best result of the knowledge-based approach. 
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1. Introduction 

Multilingual speech recognition, integrating several language-specific recognizers into one 
recognizer, is one of the popular research topics in the speech recognition field [Schultz et al. 
2006; Uebler 2001; Kohler 2001; Kumar et al. 2005; Lyu et al. 2002]. Many multilingual 
speech recognizers depend on a large-scale speech database for each language in order to 
obtain high performance. However, such a large-scale speech corpus is not always available 
for all of the languages to be used. For example, in Taiwanese, which is one of the most two 
important languages in Taiwan, the size of the available corpus of Taiwanese is not 
comparable to that of other majority languages, such as English, Mandarin, and Spanish. In 
fact, researchers who want to build a multilingual speech recognizer by collecting a 
well-designed, large-scale speech corpus for every language find that it is not feasible for all 
languages. Automatic speech recognition (ASR) systems can be prohibitively expensive to 
develop because of time consumption and expense as the process involves a huge amount of 
data collection and calls for the complete building of an acoustic model for the minor language. 
In this paper, we try to find an approach which uses the majority languages, defined as those 
languages with large-scale training data available, to help the minor languages and build a 
reliable multilingual acoustic model. 

Several approaches are proposed for the multilingual ASR system [Schultz et al. 2006; 
Uebler 2001; Kohler et al. 2001; Wu et al. 2006; Liu et al. 2005; Mak et al. 1996]. One 
approach is to map a language-dependent phone set to a global inventory of the multilingual 
phonetic phone set based on phonetic knowledge to construct the universal phone inventory. 
Under this approach, the same phonetic representation within different languages shares the 
same training data. However, the approach based on universal phone inventory only uses the 
phonetic knowledge, and it does not consider the spectral properties of the variations of the 
sounds with different speakers. Another approach is to merge the language-dependent phones 
using a data-driven approach to map the phones in different languages by specific distance 
measure between well-trained acoustic models. The advantage of this approach is that the 
distance is estimated from the statistical measure of similarity of speech sounds among the 
languages. Nevertheless, optimizing the final number of the universal phone set is an 
important issue in such a data-driven approach. 

In this paper, we use a constrained data-driven approach to select the optimal phoneme 
set which directly reflects the characteristics of the unbalanced training trilingual speech data. 
The training corpora include the three most popular languages in Taiwan -- Mandarin, 
Taiwanese, and Hakka -- where the amount of Mandarin data is two times as large as that of 
Taiwanese and five times as large as that of Hakka. The training procedures for the trilingual 
acoustic model can be divided into the following steps. First, we use the Bhattacharyya 
distance [Mak et al. 1996] to measure the phonemes distance among the languages according 
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to well-trained acoustic models. Then, we apply a 2-step clustering using the hierarchical 
agglomerative clustering (HAC) [Fowlkes et al. 1983] with delta Bayesian information criteria 
(△BIC) [Tristschler et al. 1999] to automatically select the optimal context dependent 
phoneme (CDP) set. The first clustering step is to generate context-independent phoneme (CIP) 
clustering rules. In the second clustering step, we use the rules as phonetic knowledge to 
constrain the CDP clustering. After the clustering procedures, we generate the new phoneme 
set where the sounds with the same label will share the training data. Finally, to optimize the 
acoustic model of the new phoneme set, we use a model complexity selection (MCS) 
[Anguera et al. 2007] to adjust the number of Gaussian components in the Gaussian mixture to 
balance between the new phoneme set and the unbalanced training data. 

This paper is organized as follows. In Section 2, we introduce the three main languages 
in Taiwan -- Mandarin, Taiwanese, and Hakka -- and also discuss their linguistic and phonetic 
characteristics. In Section 3, we use a knowledge-based approach to build two baseline 
systems, a language-dependent and a language-independent recognizer, on an unbalanced 
speech corpus. In Section 4, we describe our proposed approach to automatically optimize a 
multilingual acoustic model, including three components: CIP clustering, CDP clustering, and 
MCS. Then, several experiments are conducted for comparison with the baseline system and 
the decision tree based approach. Finally, we summarize our key contributions of this paper. 

2. Linguistic and Phonetic Properties of Mandarin, Taiwanese and Hakka 

The goal of this paper is to use a majority language, like Mandarin, to assist minor languages, 
such as Taiwanese and Hakka, to train a unified acoustic model for a trilingual ASR system. 
In order to efficiently combine the acoustic units among the languages, some basic knowledge, 
such as the phonetics, phonology, and other linguistic aspects, is essential. In this section, we 
will introduce the linguistic and phonetic characteristics of the three languages. 

2.1 Linguistic Properties 
Mandarin, Taiwanese, and Hakka are the three main languages in Taiwan. Mandarin is the 
most important language in ethnically Chinese societies, because of its huge population and 
the potentially huge market. Another language, Taiwanese, is the mother tongue of more than 
75% of the population in Taiwan. In addition, 10% of the local population uses Hakka as their 
first language. In fact, many people can use any two of these three languages. Due to this 
distribution, Taiwan is a bilingual, or even a trilingual society. On the other hand, the three 
languages, also used by many overseas Chinese living in Singapore, Malaysia, Philippine, and 
other areas of Southeast Asia, are the members of the Chinese language family. Some people 
prefer to call them "dialects" but, unlike dialects in other languages, which are usually 
mutually intelligible to each other, the "dialects" in spoken Chinese are almost completely 
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mutually unintelligible. Due to their mutual unintelligibility, we prefer to call Mandarin, 
Taiwanese, and Hakka three languages. 

2.2 Phonetic Properties 
To express the three languages in phonetic properties, we applied a heuristic mapping 
approach based on the Formosa Phonetic Alphabet (ForPA), an easy-to-use transcribing 
system for the trilingual speech data of these three languages [Lyu et al. 2004]. Basically, the 
Mandarin Phonetic Alphabet (MPA, also called zhu-in-fu-hao) and Pinyin (han-yu-pin-yin) 
are the most widely known phonetic symbol sets to transcribe Mandarin Chinese, but both of 
these systems are designed for Mandarin. ForPA is designed for transcribing Mandarin, 
Taiwanese, and Hakka for linguistic computing. Generally speaking, ForPA might be 
considered as a subset of IPA [Mathews et al. 1975], but it is more suitable for applications to 
the languages used in Taiwan. 

These three languages are monosyllabic languages; therefore, a syllable, the smallest 
meaningful unit, is the basic pronunciation unit of the Chinese languages. Although the three 
languages have similar CV (C: Consonant, V: Vowel) structure at a syllabic level, Taiwanese 
and Hakka have much more abundant variation in allowing syllable-final consonants, 
including -p, -t, -k, -h. Totally, there are 408 base syllables in Mandarin, 709 base syllables in 
Taiwanese, and 777 base syllables in Hakka. The total number of the union set of syllables 
among the languages is 1333, and only 141 syllables are in common. 

In the phonemic level, there are 21 consonants and 9 vowels in Mandarin, while there are 
18 consonants and 16 vowels in Taiwanese. In Hakka, there are 20 consonants and 25 vowels. 
Therefore, the total number of phonemes is 30, 34, and 45 for Mandarin, Taiwanese, and 
Hakka, respectively. Additionally, some of the phonemes in the three languages are labeled 
with the same symbols by phoneticians, meaning that they are phonetically very close. In our 
observation, only 26 phonemes are truly in common. The common phonemes can share 
acoustic data among the languages. We list the statistical information of several different 
phonetic units in these three languages in Table 1. 

Table 1. The statistic information of all Mandarin (M) Taiwanese (T) and Hakka (H) 
linguistic units in two levels: the numbers of phoneme (Np), the numbers of 
syllables (NS), where ∩and∪ represent intersection and union of sets, 
respectively. 

 M T H HTM ∪∪ HTM ∩∩  

Np     30    34     45     73    26 

NS    408   709    777   1333   141 

Ntri    530  1000   1049   1740   214 
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3. Language-Dependent and Language-Independent System 

In this section, we describe two ASR systems A) language-dependent ASR and B) 
language-independent ASR. The first one is solely trained on a single language for each 
language, and we combine each recognizer into one recognizer as the language-dependent 
ASR system. The second one uses a universal phoneme inventory to map phonemes among 
the languages and build the common recognizer in one level. In the following, we first 
introduce the speech corpora for training the acoustic models, and then we report the 
performance of the two systems. Of course, some discussions are also included at the end of 
this section. 

3.1 Trilingual Speech Corpus 
In order to simulate the available speech data in Taiwan, we use an unbalanced trilingual 
speech corpus for all of the experiments of this paper. The details of the corpus are listed in 
Table 2. Three languages are included -- Mandarin Taiwanese, and Hakka -- which are 
recorded with a 16 kHz, 16-bit, microphone channel. There are 100 speakers, 50 speakers each 
for Mandarin and Taiwanese, for the training set. Each of the speakers recorded two sets of 
phonetically balanced utterances, and each of the utterances contained one to four syllables. In 
the Hakka training set, there were only two speakers; one speaker recorded two monosyllabic 
sets, and the other speaker recorded 4320 phonetically balanced utterances. In the two 
monosyllabic sets, we included the two main Hakka accents, Miaoli and Hsinzu, of Taiwan. 
The former contains 2269 tonal syllables, and the latter contains 2970 tonal syllables. As we 
mentioned before, the training sets of the corpus are unbalanced, where the total number of 
hours for Taiwanese is about half of that of Mandarin, and the amount of the speech data in 
Mandarin is five times as large as that of Hakka. For the test set, another 21 speakers recorded 
the test speech, with a total length of almost 1 hour. 

Table 2. Statistics of training and testing the trilingual speech corpus. 

  
language 

number of 
speakers 

number of 
utterances 

speech length 
(in hours) 

Training Set 

Mandarin    100    43,087    10.9 

Taiwanese     50    22,851     5.2 

Hakka 2     9559     2.1 

Test Set 

Mandarin 10    1,000      0.29 

Taiwanese 10    1,000      0.27 

Hakka 1     834      0.43 
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3.2 Language-Dependent System 
For the language-dependent recognizer for the trilingual speech, we trained a monolingual 
acoustic model for each of the languages using individual language training speech data. After 
that, we combined the monolingual acoustic model of all languages into a single one. Based 
on the units of each monolingual acoustic model having their language tags, they do not share 
the training data. For example, unit /a/ for Mandarin is labeled as /a_M/, /a_T/, and /a_H/ for 
Taiwanese and Hakka as well. The same ForPA symbols among the languages cannot share 
parameters in the acoustic model. Therefore, the size of the parameters will increase 
proportional to the number of languages. The number of tri-phone context-dependent acoustic 
phone models for the language-dependent system is 2579. 

The experimental setups are described as follows. For the feature extraction, each frame 
of short-time speech waveform is represented by a feature vector consisting of 12 
mel-frequency cepstral coefficients (MFCCs), energy, their first order derivatives (delta 
coefficients), and second order derivatives (delta-delta coefficients). Each of the frames is 20 
milliseconds in length with 10 milliseconds shifting, which means that the adjacent frames 
have a 10 milliseconds overlap. For the acoustic modeling, we used the Hidden Markov Model 
(HMM) for constructing a context-dependent acoustic phone model, and each of the HMMs 
has three states. For the language modeling of each language, a uniform distribution is used, 
which implies that the perplexities of the language model of Mandarin, Taiwanese, and Hakka 
are 408, 709, and 777, respectively. The acoustic model and the Viterbi decoding used to 
generate the recognized syllable sequences are implemented with HTK [Young et al. 2002]. 

The language-dependent systems are trained and evaluated only on language specific 
data, and the results are shown in Figure 1. Basically, the syllable error rate is positively 
correlated to the perplexities of the language model. For example, the highest perplexity 
among the three languages is Hakka, 777; therefore, the average syllable accuracy rate of 
Hakka is 33.9%. In contrast, the smallest perplexity is Mandarin, and the average syllable 
accuracy rate of Mandarin is 60.8%. We believe both the perplexity of language modeling and 
the amount of training data influence the results. Due to the lack of training data, the highest 
performance of Hakka is achieved when the number of Gaussian components in the Gaussian 
mixture is only 4. When we increased the number of Gaussian components in the Gaussian 
mixture, the performance dropped. On the other hand, Mandarin achieved the highest 
performance when the number of Gaussian components in the Gaussian mixture was 32, and 
the performance steadily increased when we increased the number components in the 
Gaussian mixture. 
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Figure. 1. The syllable accuracy rates of the language-independent system with 

different maximum number of the Gaussian components in a Gaussian 
mixture per state, where “LD-H-777” represents language-independent 
system tests on Hakka utterance with 777 language model perplexity. 

3.3 Language Independent System 
The basic concept of language-independent acoustic modeling is a knowledge-based model by 
sharing of the phonemes among the languages. The sound representations of phonemes are so 
similar among the languages that phonemes can be considered as units independent of the 
training set language. In this paper, we use ForPA to transcribe the sounds among the 
languages. In this method, the similarities of sounds are classified based on phonetic 
knowledge. Sounds with the same phonetic labeling that exist in different languages share the 
data. Like the other language-independent recognition system [Marthi et al. 1999], the 
phonemes of different languages which belong to the same ForPA units share data from 
different languages during training. In this way, we combine the acoustic model from the three 
languages, and the size of the acoustic models would not increase as large as the number of 
languages added. The acoustic model is unified in the language-independent speech 
recognition system. Due to the sharing of the training data among the languages, each 
parameter of a common phoneme in the acoustic model will get more available data for 
estimation than in language-dependent systems. 

Two results are shown in Figure 2 and Figure 3. The result in Figure 2 was derived from 
the language-independent acoustic model with a language-specific language model, and that in 
Figure 3 was derived from the language-independent acoustic model with a unified language 
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model. For example, “LI-H-777” means that we used all of the training data in the three 
languages to build a language-independent acoustic model, and evaluated Hakka utterances 
only used the Hakka language model, where the perplexity of the language model was 777. On 
the other hand, the system, “LI-H-1333”, used the language-independent acoustic model and 
tested Hakka utterances with the unified language model, and the perplexity of language 
model was 1333. 

 Figure 2. The syllable accuracy rates of LI system with the language-specific 
language model in different maximum numbers of Gaussian 
components in a Gaussian mixture per state. 

Figure 3. The syllable accuracy rates of LI system with the unified language 
model in different maximum numbers of Gaussian components in a 
Gaussian mixture per state. 
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Obviously, due to the sharing of training data, we obtained better performance from the 
language-independent acoustic model with the language-specific language model than from 
the language-dependent system. The average of the syllable accuracy rates for Mandarin, 
Taiwanese, and Hakka are 63.9%, 52.3%, and 40.1%, respectively. On the other hand, the 
performance dropped reasonably when we used the language-independent language model, 
where the language perplexity is 1333, compared with that of the language-specific case. The 
best performance for Hakka with the language-independent recognition system used 8 
Gaussian components in a Gaussian mixture per state, but that of the language-dependent 
recognition system used only 4 Gaussian components in a Gaussian mixture per state. This 
means that the training data sharing from Mandarin helps Hakka, because some of the sounds 
of Hakka can get training data from the sounds of Mandarin if they share the same ForPA 
labels. 

Based on this experiment, we had the following two conclusions: first, the number of 
Gaussian components in a Gaussian mixture for such a small amount of Hakka training data in 
the acoustic model was too large, thereby causing the poor performance. Therefore, when we 
used too many parameters in the number of Gaussian components in a Gaussian mixture per 
state, it made their estimations become unreliable because the available training data was 
insufficient to accurately estimate the parameters. According to this fact, second, we have to 
find a way to decrease the parameters in the acoustic model and give the retrenched 
parameters “more” training data to estimate. 

3.4 Discussion 
According to the performance of the baseline results of language-dependent and 
language-independent systems, we have found that the accuracy rate is positively correlated to 
the amount of training speech. This means that if we have more available training data, we 
may obtain higher performance. This assumption is reasonable, because, if the parameters in 
the acoustic model have more data for estimation, the parameters will be more reliable. 
However, it is time consuming and expensive to collect more training data for a new language, 
especially a minor one. On other words, it is not always feasible for all of the languages to get 
as large training data as possible. As a result, the performance of the minor language, Hakka, 
is not comparable with that of the majority language, Mandarin. Since the problem of training 
data shortage will encumber the overall performance of multilingual speech recognition, we 
should find a way to use the available majority language corpus to help the ASR system in the 
minor language to balance the total parameters in the acoustic model between the available 
training data. 

A training data sharing approach of acoustic modeling in multilingual speech recognition 
helps the minor language to perform well based on the information found in the majority 
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language. In our previous bilingual speech recognition experiments [Lyu et al. 2008], we 
clustered similar phonemes so the total numbers of the phoneme set in the acoustic model 
reduced and required fewer parameters to get sufficient training data for estimation. As 
sufficient data becomes available, parameter estimating will be more robust. Furthermore, the 
number of mixtures in the acoustic models is also a critical factor influencing the recognition 
performance when using an HMM-based recognizer. According to our Hakka experiments, 
when we increased the number of Gaussian components in a Gaussian mixture in the minor 
language, the accuracy rate dropped. Contrary to the result of the minor language, the 
accuracy rate of the majority language increased as the number of Gaussian components in a 
Gaussian mixture increased. Based on the above analysis, we identify the following two issues 
in order to improve the final performance using the unbalanced trilingual corpus. 

 How to efficiently cluster similar phonemes in these three languages then automatically decide 
the final number of phonemes in the acoustic model of the trilingual recognizer. In other words, 
we need to redefine the acoustic unit and make the parameters in the acoustic model have 
sufficient training data to evaluate and then get better performance in the unbalanced speech 
corpus. 

 The number of Gaussian components in a Gaussian mixture within a state should depend on 
the amount of the available training data. We should not increase the mixtures blindly. 

In order to cluster the phonemes, we should first analyze the shortage condition of the 
training data of all the languages. To get such the knowledge, the training data should be 
totally “observed”. After observation, we recognize all the conditions of the training data of 
each language then generate the clustering rules to refine the phoneme set based on the 
observed data. In fact, this kind of method is a data-driven approach. According to the rules, 
we generate a new phoneme set which is given a consideration to balance the available 
training data and the training parameters. Therefore, the parameters of such a new phoneme 
set will have sufficient training data in an unbalanced corpus. In the next section, we propose 
an approach which not only automatically optimizes the number of parameters in the acoustic 
model but also increases the number of mixtures per state depending on model complexity 
selection. 

4. Acoustic Model Optimization 

4.1 System Overview 
In this section, we propose an approach integrating three main steps: CIP clustering, CDP 
clustering, and MCS. The overall diagram is shown in Figure 4. First, we use a data-driven 
approach to estimate the similarity of the acoustic phoneme from the observed training data of 
all the languages. Second, based on the similarity measure, we use a clustering algorithm to 
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group the phoneme sets that are similar. In this stage, two algorithms are used: HAC [Fowlkes 
et al. 1983] and△BIC [Schwarz 1978]. The new phoneme set is decided by the △BIC which 
is based on the optimal Bayesian model selection criterion; therefore, we called the new 
phoneme set an optimal phoneme set (OPS). Finally, we use a MCS to adjust the number of 
Gaussian components in a Gaussian mixture per state of a HMM-based acoustic model. By 
doing this, we balance the number of Gaussian components in a Gaussian mixture in the OPS 
and the unbalanced training data. The details of the similarity measurement are described in 
the following: 

 Similarity Measurement: 

In order to measure the similarity of HMM-based acoustic phoneme model, we introduce a 
measure distance, Bhattacharyya distance, which is similar to a likelihood ratio test to 
evaluate a similarity of each phone model in the context independent and context 
dependent phone acoustic models. The Bhattacharyya distance is a theoretical distance 
between two Gaussian distributions [Mak et al. 1996], and is said to be equivalent to an 
upper bound on the optimal Bayesian classification error probability. In this stage, the 
number of the Gaussian components in a Gaussian mixture in each state of a HMM 
acoustic model is only one. We give a brief review here with the following equation and its 
notations. 

1 21 1( ) ( ) ln
8 2 2

pi qi

pi qiT
pqi pi qi pi qi

pi qi

D u u u u
−

+⎡ ⎤
⎢ ⎥+⎡ ⎤ ⎢ ⎥⎣ ⎦= − − +⎢ ⎥

⎢ ⎥ ∑ ∑⎣ ⎦

∑ ∑
∑ ∑

               (1) 

Figure 4. The overall diagram for automatically optimizing the acoustic 
models. 
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where 
pqiD is the Bhattacharyya distance between pth and qth phonemes in ith state, piu is 

the mean vector of pth phoneme in ith state, and pi∑ is the covariance matrix of the pth 
phoneme in ith state. 

The first term of the right side in Equation (1) discriminates the class due to the 
difference between class means, while the second term discriminates the class due to the 
difference between class covariance matrices. 

 OPS: 

The OPS is a CDP set generated by the following two steps. First, we generate CIP 
clustering rules, which are based on the HAC and △BIC algorithms. The goal of the rules 
is to phonetically constrain the next step, CDP clustering. The CDP clustering generating 
the OPS also uses the HAC and △BIC algorithms. 

 MCS: 

Before MCS, each of the states only contains one Gaussian component. Therefore, the goal 
of MCS is to increase the number of Gaussian components in a Gaussian mixture in such a 
way where the increasing rules of the state are in accordance with the available training 
data corresponding to the state. In fact, MCS is an algorithm to get a balance between the 
number of the CDP-based acoustic models and the amount of available training data. 

4.2 CIP Clustering 
The goal of CIP clustering is to obtain phonetic rules to constrain CDP clustering. The 
procedure is initialized with context-independent phoneme models to select and merge those 
models that correspond to the two most similar context-independent phonemes iteratively. In 
order to obtain the hierarchical structure of the phoneme distances, we adopt HAC then use 
△BIC to decide the clustering rules of CIP clustering. In this step, if the context-independent 
phonemes are grouped, the same central context-independent phonemes of the 
context-dependent phonemes are put in a clustering pool. Then, in the next step, CDP 
clustering will also use HAC and △BIC to select final context dependent phoneme to cluster 
from each of the clustering pools. An example is shown in Figure 5 and Figure 6. A set of 
context-dependent phonemes with central context-independent phonemes being /c_M/ and 
/c_T/ (as shown in Figure 5) used HAC and △BIC to find several clustering groups, such as 
the group of /c_T+ng_T/ and /c_T+er_T/ in the right part of Figure 6. 

There are several algorithms to evaluate the distance of each cluster in HAC, such as the 
centroid-linkage, average-linkage, complete-linkage, and average-linkage agglomerative 
algorithms. In this paper, due to its ability to get the best agglomerative coefficient, measuring 
the clustering structure of the phoneme set, we use the average-linkage agglomerative 
algorithm with Euclidean distance to construct the hierarchical tree from the similarity matrix. 
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The similarity matrix is generated by the similarity measure and the elements of the matrix are 
context-independent phonemes. The average-linkage agglomerative algorithm is defined the 
distance between two clusters and measure the average distance between a sample in one 
cluster and a sample in the other cluster. 

,

1( , ) ( , )
p q

avg p q
x C y Cp q

d C C d x y
n n ∈ ∈

= ∑                                        (2) 

where np and nq are the numbers of the cluster Cq and Cp respectively and x and y are two data 
points. 

△BIC is the confidence measure to cluster the similar context independent phoneme 
from the HAC results. Before we describe △BIC, we should introduce BIC. BIC is an 
asymtotically optimal Bayesian model selection criterion used to decide which of m 
parametric models best represents n data samples x1, … xn, where xn ∈ Rd. Each model Mi 
has a number of parameters ki. We assume that all the samples xn are statistically independent. 
According to BIC theory [Schwarz 1978], for sufficiently large n, the best state of the data is 
the one which maximizes. 

1
1log ( , , ) log
2i i n iBIC x x k nλ= −A …                                          (3) 

where ),...,( 1 ni xxA  is the likelihood of the data under the model iM . 

In our case, according to the HAC structure, we select the nearest two nodes for model 
merging: choose the model Mp over Mq if △BIC defined as BICp – BICq is positive. Based on 
Equation (3), the formula of △BIC is written as: 

1 ( 1)log log log ( ) log
2 2 2 2 2
p q r

p q r r
n n n d dBIC d nλ +

Δ = − ∑ − ∑ + ∑ + +             (4) 

where np , nq and nr are the number of occurrences of node p, q and r where nr equals np adding 
nq. Σp , Σq and Σr are the covariance of the model p, q and r respectively, In practice, we tried 
to use the value of λ from 0.85 to 1.15, but the final results of △BIC did not change too much. 
Thus, we chose one as the value of λ. The results of consonant and vowel of using CIP 
clustering are demonstrated in Figure 5 and Figure 6, respectively. Table 3 shows that 12 
consonants and 20 vowels are merged. 
Table 3. The CIP clustering results. 

Consonant [b_K, d_K, g_K] [b_T, b_M] [d_M, d_T] [g_M, g_T] [h_K, k_M] [p_K, t_K] 
[z_M, z_T, zh_M] [c_M, c_T] [s_M, s_T] [l_M, l_T] [rh_M, m_M] [n_M, n_T] 

Vowel 

[a_K, ann_K] [ng_K, u_K,unn_K] [e_K, enn_K] [ii_K, inn_K] [a_M, a_T,] 
[a_M, o_T, onn_T] [er_M, err_M] [e_M, e_T] [inn_M, inn_T] [i_M, i_T] 
[ih_T, innh_T] [ng_M, ng_T] [uk_K, uT_K] [ok_K, op_T] [ak_T, ap_T] [ap_T, 
ok_T] [on_T, onnh_T, onn_M, uh_T] [et_T, ek_T] [ennt_K, et_K] [ip_T, it_T] 
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Figure 5. The consonant example of using HAC and CIP for Mandarin, Taiwanese, 
and Hakka, where the height is the value of the Euclidean distance 
among the phoneme models. 

Figure 6. The vowel example of using HAC and CIP for Mandarin, Taiwanese, 
and Hakka. 
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4.3 CDP Clustering 
Based on the rules derived from CIP clustering, we constrained the CDP clustering. The 
procedure was the same with CIP clustering, but we used context-dependent phonemes to 
replace context-independent phonemes. We generated 12 consonant and 20 vowel CDP 
clusters, and took the merging process for the phonemes /c_T+*_T/ and /c_M+*_M/ as an 
example, which were shown in Figure 7. First, we generated a hierarchical tree whose bottom 
nodes are context-dependent phonemes containing /c_T/ and /c_M/ in their phonemic 
transcription using the HAC algorithm based on the similarity matrix. Then, we created a new 
context-dependent phoneme set using △BIC. If the value of △BIC between two 
context-dependent phonemes or sets is bigger than zero, then the two context-dependent 
phonemes or the two sets are merged. The merged context-dependent phonemes or the sets are 
used as the new context-dependent phonemes, and the new context-dependent phonemes in 
the same group use common training data to train new acoustic models. On the other hand, if 
the value of △BIC is negative, the merging process stops. 

 
Figure 7. The merging result of LD-CDP, where the center of consonant is 

  /c_M/ and /c_T/. 

Another example, shown in Figure 5, is /b_K/, /d_K/ and /g_K/. In our case, the training 
data of Hakka is one-fifth of that of Mandarin. Therefore, the performance of Hakka’s 
recognizer could not possibly be as good as that of Mandarin if we only used the 
language-dependent system. Therefore, the results of CIP clustering make a phonetic 
knowledge rule to put all of the central context-independent phoneme, such as /b_K/, /d_K/ 
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and /g_K/, of the context-dependent phoneme, such as /b_K+*/, /d_K+*/ and /g_K+*/ in a 
clustering pool. Based on this rule, we used CDP clustering to generate new acoustic units. 
Essentially, as shown in Figure 8, there are 41 context-dependent phonemes in this clustering 
pool based on CDP clustering. Then, using HAC and △BIC, the final 31 new acoustic units 
are generated. For example, some of the sub-phone such as the first two in Figure 8, 
/g_K+ok_K/ and /g_K+ok_K/, are merged. It is noticed that, although the context-independent 
phonemes of Hakka, /b_K/, /d_K/ and /g_K/, became a confusion set, the final CDP clustering 
made the set of context-dependent phonemes separable. In Figure 8, we can see, basically, the 
sub-phones of /g_K+*/, /d_K+*/ and /b_K+*/ are not inter-merged, they are intra-merged. 
This means that the context-dependent phonemes merge together only when the have the same 
context-independent phonemes. 

 
Figure 8. The merging result of LD-CDP, where the center of vowel is 

/ok_K/ and /op_T/. 

4.4 Model Complexity Selection 
After we generated the OPS using a 2-step data-driven phoneme clustering, we considered the 
balance between the resolution of the generated OPS and the amount of available training data. 
For the minor languages, Taiwanese and Hakka, the more Gaussian components in a Gaussian 
mixture, the lower the accuracy rate we get. Thus, the number of Gaussian components in a 



 

 

          Acoustic Model Optimization for Multilingual Speech Recognition         379 

Gaussian mixture for each state in the acoustic model should be carefully controlled. 
According to [Anguera et al. 2007], a parametric modeling technique, MCS, is chosen to 
perform on each state with sufficient training data, and we select the number of Gaussian 
components in a Gaussian mixture based on the amount of the data frames belonging to the 
state in the acoustic model. MCS works as follows: whenever there is a change in the amount 
of data assigned to a model, the number of the available training samples that are assigned to 
the model is used to determine the new number of mixtures in the Gaussian components in a 
Gaussian mixture using: 

( )
i
pi

p
N

M round
OR

=                                                       (5) 

where i
pM  is the number of Gaussian components in a Gaussian mixture of the pth acoustic 

model of the ith state, and it is determined by the amount of the training data belonging to that 
model at that occurrence i

pN  divided by the occurrence ratio (OR) where OR is a constant 
value across all training process. Therefore, the final number of Gaussian components in a 
Gaussian mixture for pth acoustic model of the ith state depends on the amount of the 
corresponding occurrence training data. 

5. The Experiments of OPS and MCS 

In this section, we used a data-driven approach to train a trilingual acoustic model and built an 
OPS speech recognition system with MCS under a data unbalanced condition. Then, we 
performed a series of the experiments to evaluate the system on three languages, Mandarin, 
Taiwanese, and Hakka. The experiments were divided into two parts: OPS and MCS. In 
addition, we used a state-of-the-art, decision tree based tri-phoneme clustering method [Young 
et al. 1994], to compare with our proposed approach. 

For the MCS part, we increased the number of Gaussian components in a Gaussian 
mixture per state depending on the training occurrence. This means that when we set the 
number of Gaussian components in a Gaussian mixture per state to be 16, not all of the states 
would increase the number of Gaussian components in the Gaussian mixture to 16. If the 
available training occurrences of the corresponding state are satisfied with Equation (5), the 
state will adjust to the number of Gaussian components in a Gaussian mixture to be 16. We 
also used the results of the LI recognition system in Figure 3 for comparison. The LI system 
described in Section 3 increased the number of Gaussian components in a Gaussian mixture 
per state in a brute-force manner, which means that when we set the number of Gaussian 
components in a Gaussian mixture per state to 16, then, no matter how many occurrences the 
particular state has, all of the states have to adjust the number of Gaussian components in the 
Gaussian mixture to 16. The results of MCS part are shown in Figure 9 and Figure 10. 
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For the OPS part, we built an OPS recognizer from the LI-CDP acoustic model based on 
the three procedures described in Section 4. First, we generated a set of 32 CIP clustering rules 
from CIP clustering; then, we generated 169 CDP rules to merge the tri-phone model in 
accordance with these rules. Finally, we obtained 1314 HMMs from LI-CDP’s 2579 
sub-phones. For each state of the HMMs, we increased the number of the Gaussian 
components in a Gaussian mixture by MCS approach. 

We also compare the performance of a decision tree (DT) approach with our OPS 
recognition system. The leaf nodes in a DT ASR system are sub-phones, and each node of the 
tree was associated with a binary question which had been selected from a set derived by 
linguistic experts. The best question was assigned to a node if it results in a binary splitting 
with minimal loss of likelihood [Liang et al. 1998]. For the other parameter configuration in 
the experiments, we used the same setting described in Section 3.2, and we showed the results 
of the decision tree system and OPS in Figure 11 and Figure 12. 

5.1 MCS Results 
First, all of the performances of all the languages using MCS (Figure 9) are better than those 
without using MCS (Figure 3). The average improvements for Hakka, Mandarin, and 
Taiwanese are 4.5%, 2.5%, and 2.5%, respectively. The best results for LI-system for each of 
the languages are 42.01%, 58.45%, and 48.79% when the maximum number of Gaussian 
components in a Gaussian mixture per state is 32, 64, and 32 for Hakka, Mandarin, and 
Taiwanese, respectively. Second, unlike the results shown in Figure 3, the results in Figure 9 
show that increasing of the number of Gaussian components in a Gaussian mixture caused the 
performance to drop in the Hakka case. This is because of increasing the number of Gaussian 
components in a Gaussian mixture per state based on the occurrence training data using MCS. 
The accuracy rate increases when the number of the Gaussian components in a Gaussian 
mixture is also increased. 

To analyze the total number of Gaussian components in a Gaussian mixture in the 
acoustic model between the system with using MCS and without using MCS, we illustrated 
the differences in Figure 10. We can see that the average number of the Gaussian components 
in a Gaussian mixture in LI system without using MCS is almost the same as the maximum 
number of Gaussian components in a Gaussian mixture. However, for the MCS case, the 
average number of Gaussian components in a Gaussian mixture of mix-2, mix-4, mix-8, 
mix-16, mix-32, and mix-64 are 2, 3.1, 6.6, 11.3, 18.1, and 24.5, respectively. Therefore, the 
total numbers of Gaussian components in a Gaussian mixture using MCS are much fewer than 
those without using MCS system. 
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Figure 9. The syllable accuracy rates of LI system with different maximum number 

of the Gaussian components in a Gaussian mixture per state using MCS. 

 
Figure 10. The total number of Gaussian components in a Gaussian mixture of the 

acoustic model in two different approaches. 
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5.2 The Results of DT and OPS 
The results of using decision tree (DT) approach and OPS approach are shown in Figure 11 
and Figure 12. We find that the performance of both the OPS and the DT-ASR systems are 
better than that of LI-MCS system. Because of the clustering approach, the similar sounds 
across languages are grouped, and this leads to a reduction in the total numbers of the 
parameters in the acoustic model. Fewer parameters get the same amount of training data in 
OPS and DT systems than that in LI-MCS system; therefore, we attained better results. On the 
other hand, the accuracy rate increased when we increased the number of Gaussian 
components in a Gaussian mixture per state even when the maximum number of Gaussian 
components in a Gaussian mixture was 64 for all languages. The results of using 64 Gaussian 
components in a Gaussian mixture are 45.97%, 58.94%, and 53.06% for Hakka, Mandarin, 
and Taiwanese, respectively. These are also the best performances achieved in this paper. 
Compared with the best results of LI-MCS system, we increase 3.96%, 1.49%, and 5.27% for 
Hakka, Mandarin, and Taiwanese, respectively. 

The DT-ASR system merges similar phonemes from both likelihood scores and some 
phonetic knowledge, while the OPS system integrates all conditions of the unbalanced training 
corpus. That means both systems have their own knowledge rules to merge similar phonemes, 
but the OPS system generates the clustering rules after observing all of the training data. 
However, the rules of the DT-ASR system are generated by the phonetic expert, such as the 
questions which are used in splitting the nodes into the leaves. The different experts for 
different languages may have various rules, especially for the multilingual ASR-DT system. 
Furthermore, the rules for merging the similar phonemes of OPS are much easier than those in 
DT because we only need to follow the optimal Bayesian model selection criterion after 
observing all of the training data. Then, the results of CIP clustering constrain the CDP 
clustering. However, the DT-ASR system is not affected by the unbalanced conditions during 
the process of building a tree. Thus, the proposed OPS which uses the data-driven approach to 
generate the knowledge-like rules concerning about the conditions of the unbalanced training 
data achieves higher accuracy rates than that of DT-ASR system. 

In our proposed OPS approach, compared with the DT-ASR, it is remarkable that the 
performance not only increases, but the performance gaps among the three languages are also 
reduced. Taking the results of Figure 12 and Figure 3 as examples, the gaps of 
Mandarin-Taiwanese and Mandarin-Hakka in Figure 3 are 9.26% and 16.74%, but the gaps in 
Figure 12 are 5.88% and 12.97%. Using the OPS approach, the performance of Taiwanese and 
Hakka catches up with the performance of Mandarin. This means our proposed OPS approach 
is able to reduce the performance gap which causes by the unbalanced condition of the 
available training data. 
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Figure 11. The syllable accuracy rates of DT with MCS in different maximum 

number of Gaussian components in a Gaussian mixture per state. 

 
Figure 12. The syllable accuracy rates of OPS with MCS in different maximum 

number of Gaussian components in a Gaussian mixture per state. 
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6. Conclusion 

In this paper, we have demonstrated a clustering approach with CIP, CDP clustering, and 
MCS steps with HAC and △BIC algorithm to generate the OPS of HMM-based acoustic 
model in an unbalanced trilingual corpus. It has been shown that the rules generated form the 
CIP provide sufficient information from the unbalanced conditions of the training corpus. 
When a trilingual corpus is unbalanced, we should put more emphasis on the characteristics of 
the corpus. We have shown that the rules derived from the data can reflect the properties of 
the corpus better and those rules are as good as the phonetic knowledge to smooth the 
unbalanced condition of the data. Besides, the MCS also plays an important role in balancing 
the OPS and the available training data. The experimental results are very encouraging in that 
the proposed approach reduces relative syllable error rate by 4.5% over the best result of the 
decision tree based approach and 13.5% over the best result of the knowledge-based approach. 
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