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Abstract 

The segment model (SM) is a family of methods that use the segmental distribution 
rather than frame-based density (e.g. HMM) to represent the underlying 
characteristics of the observation sequence. It has been proved to be more precise 
than HMM. However, their high level of complexity prevents these models from 
being used in practical systems. In this paper, we propose a framework that can 
reduce the computational complexity of the Constrained Mean Trajectory Segment 
Model (CMTSM), one type of SM, by fixing the number of regions in a segment so 
as to share the intermediate computation results. Our work is twofold. First, we 
compare the complexity of SM with that of HMM and point out the source of the 
complexity in SM. Secondly, a fast CMTSM framework is proposed, and two 
examples are used to illustrate this framework. The fast CMTSM achieves a 95.0% 
string accurate rate in the speaker-independent test on our mandarin digit string 
data corpus, which is much higher than the performance obtained with HMM-based 
system. At the mean time, we successfully keep the computation complexity of SM 
at the same level as that of HMM. 

Keywords: Speech Recognition, Segment Model, Mandarin Digit String 
Recognition 

1. Introduction 

The Hidden Markov Model (HMM) [Rabiner et al. 1993] has been used successfully for 
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acoustic modeling in many speech recognition systems. Given the state sequence, feature 
vectors are assumed to be conditionally independent, and the task of extracting the trajectory 
can be elegantly achieved by applying the Viterbi algorithm frame by frame. However, the 
above assumption is far from realistic, which limits the HMM’s ability to capture the relations 
within a segment. Another weakness of HMM is that it is not accurate enough to represent a 
non-stationary observation sequence by means of a piecewise constant state [Deng et al. 1994; 
Hon et al. 1999]. In order to handle these problems, a lot of methods have been proposed, 
including SM [Ostendorf et al. 1996], which is a family of methods among them. 

SM is totally different from HMM in terms of its segmental decoding method and 
potential for accomplishing some tasks effectively that are naturally difficult for an HMM 
based system, since it integrates more segmental information into the decoding process, 
produces the n-best list during the decoding process etc. However, the good acoustic modeling 
of SM is at the cost of high computation, which is much higher than that of HMM. It prevents 
SM from being applied in practical systems. The high complexity of SM is mainly due to the 
segment evaluation process. Segment evaluation cannot be decomposed and the intermediate 
computation information is not shareable between different segments even when two segments 
only differ by one frame. Previous work accelerated SM using efficient segment pruning 
algorithms. V. Digalakis et al. [1992] proposed a pruning method to speed up SM. They 
estimate the score of a segment from part of the segment. Then those hypotheses with low 
likelihood are pruned before the whole segment is evaluated. The amount of reduction in 
computation depends on the discrimination ability of the feature vector. S. Lee et al. [1998] 
and J. Glass [2003] proposed a landmark-based algorithm that reduces the search space by 
detecting the potential boundaries of phonemes with the aid of special features or HMM 
decoders, so that the number of the possible hypothesized segments in the search space can be 
reduced greatly. However, since the detection of boundaries is unreliable and not accurate 
enough, the efficiency of this algorithm is discounted. The most important point is that the 
speed of SM based on the above methods is still far slower than that of HMM, since the 
computations performed by these algorithms are based on segments, while in the case of 
HMM, they are based on frames. In this paper, we propose a framework to reduce the 
complexity of the Constrained Mean Trajectory Segment Model (CMTSM) [Ostendorf et al. 
1996], one family of SM. In this new framework, CMTSM can divide segment computations 
into frame computations, which are shared between different segments; thus, the redundant 
computations of segments can be avoided. Guided by this framework, we have measured the 
complexity of Stochastic Segment Model (SSM) [Ostendorf et al. 1989] based on the number 
of Gaussian mixture models evaluated during recognition, and found that the complexity is not 
proportional to the product of the model’s number and the maximum allowable duration, but is 
only related to the number of models, or more exactly, to the number of regions in the system. 
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The complexity of SSM is on the same level as that of HMM. The speed of the Parametric 
Trajectory Model (PTM) [Gish et al. 1992; Deng et al. 1994], another type of CMTSM, can 
also be greatly enhanced with some minor modifications of the original algorithm, based on 
our framework. 

The rest of this paper is organized as follows. SM is introduced in the next section by 
comparing HMM with SM in terms of modeling and decoding. Then, in Section 3, we present 
the fast framework for CMTSM and two examples, the fast SSM and the fixed PTM, illustrate 
it. Section 4 presents experimental results obtained with the fast framework. Finally, 
conclusions are drawn in Section 5. 

2. Segment Model and Decoding 

2.1 Introduction to the Segment Model 
In HMM, the model unit is the state, and the relations among feature vectors are represented 
by the relations among the states mapping to these features. In SM, the model unit is based on 
segments, such as phonemes, syllables, and words. Hence, the relations between feature 
vectors in the same segment are modeled directly. The probability density of a variable length 
feature sequence 1 1 2{ , ,... }l

lx x x x=  measured by SM can be represented as follows: 

1 1 1( | ) ( | ) ( | )l l lp x f x g xα α α= ,                 (1) 

where α is the label of the acoustic model, 1( | )lf x α is the output density of SM, and 

1( | )lg x α is a segment level score, such as the duration score. 

2.2 Decoding Comparison between HMM and SM 
The goal of a speech recognizer is to find the most likely word sequence given sentence 1

Tx . 
Let 1

Nα  be the label sequence of acoustic models representing words intended by the speaker, 
who produces 1

Tx above. That is, 

1 1
1 1 1 1 1 1

, ,
ˆ arg max ( | ) arg max ( ) ( | )

N N

N N T N T N
N N

p x p p x
α α

α α α α= = ,                (2) 

where 1( )Np α is the probability measured by the language model and 1 1( | )T Np x α is the 
density measured by acoustic models. More exactly, 1 1( | )T Np x α is the product of acoustic 
models' densities in different segments of 1

Tx : 

,

( ) ( )
1 1 ( 1) 1 ( 1) 1

1 1
( | ) ( | ) max ( | )

T N

N NS i S iT N
i iS i S iSS i i

p x p x p xα α α− + − +
∈Λ = =

= ≈∑ ∏ ∏ ,           (3) 

( 1) ( )S i S i− < , (0) 0S = and ( )S N T= , 
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where ,T NΛ is the segmentation boundary set dividing a T -length sequence into N parts 
and ( )S i  is the boundary point of segment i . 

2.2.1 Decoding in HMM 
The above decoding process is accomplished by the Viterbi algorithm in HMM. We will take 
a left-to-right HMM without state skipping as an example to illustrate decoding in HMM: 

* *
1

1
( , ) ln ( | , ) max ( ( , )). , 1 | |, 2m m m

i j i
J i p x i J j i m T i Lαα α α α−

− ≤ ≤
= + ≤ ≤ ≤ ≤ Ω ≤ ≤ ,        (4) 

where * ( , )mJ iα  is the maximum accumulated score for the state sequence from the 1-th frame 
to the m -th frame, given state i and model labelα for frame mx ; ( | , )mp x iα  is the state score 
of frame mx ; Ω is the number of models; Lα  is the number of states for α . 

The above formula can be applied to all internal states of each model (i.e., 2i ≥ ). At the 
boundary of the model, i.e., 1i = , the formula is in the following form: 

* * *
1 1

1 | |
( ,1) ln ( | ,1) max [ ( , ) ln( ( )), ( ,1)].m m m mJ p x J L p Jβ

β
α α β α α− −

≤ ≤Ω
= + +               (5) 

The final solution for the best path is 

* *

1
max[ ( , ]TJ J Lα

α
α

≤ ≤Ω
= ,                   (6) 

and the best path can be obtained by backtracking the best final score. 

The cost of the Viterbi algorithm is essentially the cost of computing the state scores. 
According to (4) and (5), the amount of computation required for the state scores is 
proportional to the number of states in each model and the observation sequence length. If the 
pruning is not considered, the approximate time complexity for the Viterbi algorithm 
is ( | | )SO T L C⋅ Ω ⋅ ⋅ , where SC  is the time cost of computing ( | , )mp x iα  and L  is the 
average number of states in each model. 

2.2.2 Decoding in SM 
SMs have to explore all possible segment boundaries due to the segmental decoding, whereas 
the problem of obtaining exact acoustic model boundaries can be avoided with HMM, since 
the frame that the exit state maps to is the boundary of the model. Though the decoding 
procedure can be performed by means of dynamic programming, the complexity of SM is still 
much higher than that of HMM. The decoding formula for SM is 

   * *
,

max{ ln[ ( | )]( ) ln[ ( )] },m
mJ J p x m P Cτ τ

τ α
α τ α= + − + +                 (7) 
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where *
mJ  is the accumulated score of the best model sequence ending at time point m and C  

is the insert factor for each segment. The best segment sequence can be obtained by 
back-tracking from the best final score *

TJ . 

Given the beginning (or end) point of models, the decoder has to hypothesize segments 
with different durations, from the minimum to the maximum length, to determine the other 
boundary point of the segment that may spring from this point. Assuming that the maximum 
allowed duration is maxL , we find that the time complexity of SM is max( | | )SegO C T L⋅ ⋅ Ω ⋅ , 
where SegC is the time cost of a segment and is comparable with or even more complex than 

SC L⋅ in HMM. Hence, SM is more costly than HMM. 

3. Fast Framework for CMTSM 

As discussed in Section 2.2.2, the high complexity of SM is due to two factors. First, SM 
explores more hypothesized models than HMM does in each frame; second, in each frame, 
SM needs to measure the densities of segments that pass this point, whereas HMM only needs 
to evaluate the densities of states mapping to this point. The second factor is more important 
for current SM systems, since density evaluation represents the lion’s share in the whole 
computation. Figure 1 shows the percentage of the time spent on density evaluation against the 
total time needed for the digit string recognition task with HMM and SSM. The model unit for 
SSM and HMM is the context independent whole-word. The computation involved in density 
evaluation is extremely time-consuming in the case of the conventional SSM and 97.6% of the 
time is spent obtaining segment scores, whereas the corresponding percentage in the case of 
HMM is only 51.4%. The time cost ratio for density evaluation in SM is much higher than that 
in HMM. The key advantage of our fast framework is that it changes the computation in SM 
from segment-based style to frame-based style and the frame-based results can be shared by 
different segments. Such transformation can be achieved in one family of SM, i.e., CMTSM. 
In the fast SM, which we will describe below, the time cost ratio for density evaluation is 
lowered to 64.2%, close to that of HMM. The details of experimental setup and total time used 
for decoding will be given in Section 4 (Table 5). 

0%

20%

40%

60%

80%

100%

HMM
( Uni phone,  Vi t er bi ) SSM Fas t  SSM

51. 4%

97. 6%

64. 2%

 
Figure 1. Percentage of the time for density evaluation in the decoding 
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Those SMs, including SSM and PTM, whose segmental distributions are modeled by 
means of region distributions while frame-based features are assumed to be conditionally 
independent given the region sequence, are called CMTSM. The so-called region here is 
similar to the conception of the state in HMM, which is the basic unit used to measure the 
probability distribution of a frame. The value of 1( | )lf x α in (1) is the product of a series of 
frame-based region scores [Ostendorf et al. 1996]: 

1
1

ln ( | ) ln ( | , , )
ll

i i
i

f x p x r lα α
=

= ∑ ,             (8) 

where ( | , , )i ip x r lα is the score of region ir  in frame ix  for model α , given duration l . 
The mapping of a feature vector to a region is only related to the segment duration and its 
position in the segment. So the measurement of the frame score for a specific region is 
unrelated to other frames or other regions. 

The assumption, frame-based features being assumed to be conditionally independent 
given the region sequence in CMTSM, guarantees to change the density evaluation from 
segment-based style to frame-based style, and the segment score can be obtained by 
recombining the region scores in an efficient way. However, these frame-based results can not 
be shared among different segments, since region models are conditional on the segment 
duration, as Equation (8) shows. We relax the modeling condition by assuming that the region 
model is independent of the segment duration. In order to achieve this, we use linear time 
resampling to map the variable length segment 1

lx  to a fixed length feature sequence l
Ly , so 

all the segment models have the same duration. In other words, the duration can be ignored in 
region models. In this way, the region scores can be shared by segments with different 
durations. The resampling function is [Ostendorf et al. 1989] 

, 0 ,i i l
L

y x i L⎢ ⎥⋅⎢ ⎥⎣ ⎦

= ≤ <                    (9) 

where z⎢ ⎥⎣ ⎦  is the largest integer n z≤ . Equation (8) can be simplified as 

1
1

ln ( | ) ln ( | , )
Ll

i i
i

f x p y rα α
=

= ∑ .                 (10) 

In short, to speed up CMTSM, we first resample a variable length segment to obtain a 
fixed length sequence and then measure region models using the fixed length segment model. 
In our implementation, a memory table is used to store the region scores in different frames. 
The computation at each feature frame consists of two parts: the computations for all the 
region models mapping to that frame, and addition operations needed to obtain the scores of 
segments over that frame; whereas the conventional SMs have to completely measure all the 
segments that pass that frame. This is the framework we propose to reduce the complexity of 



 

 

       A Fast Framework for the Constrained Mean Trajectory Segment Model by     79 

Avoidance of Redundant Computation on Segment 

CMTSM. In the following, two examples will be given to illustrate the framework. 

3.1 Complexity of SSM 
SSM represents a variable length observation sequence by means of a fixed length region 
sequence. A resampling function is used to map the variable length segment 1

lx to the fixed 
length model region sequence 1

Ly . Two kinds of resampling can be adopted to map a variable 
length sequences to a fixed L-length sequence. One is space-based resampling, and the other is 
linear time resampling [Ostendorf et al. 1989]. Space resampling chooses L sampling points, 
which are equidistant (Euclidean distance) along the segment trajectory, by means of 
interpolation. The linear time resampling is similar to (9). The two resampling functions have 
similar performances as reported by M. Ostendorf. Given modelα , the log conditional 
probability of a segment 1

lx  is 

1
1

log[ ( | )] log[ ( | , )] log[ ( | )]
Ll

i i
i

P x a p y a r P lλ α
=

= +∑ ,                 (11) 

where ( | )P l α is the duration distribution of the segment, givenα . 

According to (11), SegC is proportional to the number of regions in the model and can be 
represented as RC L⋅ , where RC is the time cost of region model ( | , )i ip y a r and L  is the 
average number of region models. The complexity of SSM is max( | | )RO T L C L⋅ Ω ⋅ ⋅ ⋅ , 
according to the conclusion drawn in Section 2.2. 

Based on the discussion of the fast CMTSM, SSM can be greatly accelerated by choosing 
the linear time resampling, and the computation of region scores in (11) can be shared by 
segments with different durations. The total cost of the SSM algorithm is essentially the cost 
of computing the region scores. Thus, the time complexity, measured based on the number of 
evaluated region models, is ( | | )RO T L C⋅ Ω ⋅ ⋅ . 

3.2 Fast PTM 
In PTM, the features in a segment are modeled by means of parameterization through constant, 
linear, or higher order polynomial regression instead of by using a sequence of regions to 
represent the curve of the trajectory. Given modelα , a speech segment 1

lx  can be modeled 
as 

0

1( ) ( )
1

pP
i i

p

ix B p E
lα α

=

−⎛ ⎞= + Σ⎜ ⎟−⎝ ⎠
∑ ,                                     (12) 

where )( pBα  is the polynomial regression coefficient of order P and iE  is a residual error 
with covariance matrix αΣ  after fitting data using the first term in (12). The frame score with 
duration l is, 
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/ 2 1 / 2

1

0 0

1( | , ) ,
(2 ) | |

1 1 1exp{ ( ( ) ) ( ( ) )} .
2 1 1

i i d

p pP P
i i

p p

p x r

i ix B p x B p
l l

α

α α α

α
π

−

= =

=
∑

− −⎛ ⎞ ⎛ ⎞′− − ∑ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ ∑

       (13) 

In the conventional method, the region models are conditional on the segment duration. 
The durations of segments are different and so are the P -order polynomials in (12). As a 
result, the frame score ( | , )p x ri iα  calculated using (13) can not be shared among different 
segments, even when two segments only differ from each other by one frame. For example, 
assume that two segments for the same model both begin at the 1-st frame and that the first 
one ends at the 10-th frame and the other at the 15-th frame. The polynomial coefficients of 
these two segments are listed in Table 1. 

Table 1. The polynomial coefficients of the segments with different durations 

  Rate    No.i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

i/10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 － － － － － 

i/15 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60 0.67 0.73 0.80 0.87 0.93 1.00 

In fast PTM, we also fix the number of regions in the model and use the linear time 
resampling to map a variable length segment to the region sequence with a fixed duration, so 
the region model is independent of the segment duration. In this way, the speed of PTM can be 
greatly enhanced. 

There are two main factors that limit errors introduced by resampling of the original 
feature on an acceptable scale, and these errors do little harm to the accuracy of the system. 
The first is the slowly time varying nature of speech signals [Rabiner et al. 1993], which can 
be seen as a quasi-stationary process. The speech feature vector is similar to the nearby feature 
vectors. Usually, the length of a region sequence in our system is longer than the average 
length of an observation sequence, so the region model can well approximate the feature that 
would appear in the corresponding position of a segment. The second factor is that resampled 
features are used in both the training phase and recognition phase, which guarantees the 
compatibility of resampled features with models. Figure 2 shows the trajectories of a speech 
data sequence and two man-made data sequences produced by 5-order polynomial regression. 
One polynomial fit the original observation sequence, and the other one fit the fixed length 
observation sequence resampled from the original features. The fixed length was 56. All the 
trajectories are shown in normalized time axes in Figure 2. It can be seen that the two 
regression trajectories are almost tiled together and that the linear time resampling does little 
harm to the model. 
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Figure 2. Trajectories for an original data sequence and two man-made data 
sequences produced by polynomial regression. 

4. Experiments and Results 

Our methods were verified on a mandarin digit string recognition system. Digit string 
recognition has achieved a satisfied performance in English [Rabiner et al. 1989]. However, 
due to the serious confusion among mandarin digits, the state-of-the-art of mandarin digital 
string recognition systems does not match that of the English counterpart. The performance of 
a recognition system depends not only on the size of the vocabulary but also on the degree of 
confusability among words in the vocabulary. Mandarin is a monosyllabic and tonal language, 
in which a syllable is composed of a syllable initial, syllable final, and tone. Insertion or 
deletion errors mainly exist in non-syllable initial words, e.g., “1,” “2,” and “5.” If a digit’s 
syllable final is similar to that of non-syllable initial words, it is difficult to segment the 
non-syllable initial words and segmentation errors tend to occur, such as the confusability 
between “5” and “55.” Substitution errors mainly occur among “6,” “9,” and “yiao” (“yiao” is 
the variation of “1”), or between “2” and “8” because of the similarity of their syllable finals. 

4.1 Experimental Setup 
Data Corpus: the mandarin digit string database includes the speech of 55 males, each of 
which made 80 utterances. The length of each utterance varies from 1 to 7 digits with an 
average length of 4. The vocabulary is “0” to “9”and “yiao1.” Statistical results show that all 
digits have the same probability of being uttered, and that the connections among digits are 
considered and balanced. At the same time, the positions (start/middle/end) of the digits in 
strings are also balanced [Deng et al. 2000]. We took the speech of the first 40 speakers 
(ordered by the name of speakers) as the training set and the data from the remaining 15 
speakers as the test set. The frame size of acoustic features was 25.6 ms and the frame shift 
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was 10ms. For each frame, a 39-dimension vector, composed of 12 MFCC and 1 normalized 
energy, 13 first order deviations and 13 secondary deviations, was calculated. 

Baseline Systems: three systems were studied, HMM, SSM, and PTM. The state in 
HMM (or region in SSM) was modeled by the Gaussian Mixture Model (GMM). In all the 
experiments, a diagonal covariance matrix was assumed for each GMM. Table 2 compares the 
baselines’ configures. Sts is the number of states, Res is the number of regions, MCs is the 
number of mixture components, “ID” means the acoustic unit is modeled by the whole-word 
(context independent), and “D” means the acoustic unit is tri-word based (context dependent) 
in Table 2. 

Table 2. The settings of the models in the experiments 

Model Sts (Res) MCs Type 

HMMI 8 16 ID 

HMMII 8 16 D 

SSMI 25 5 ID 

SSMII 40 10 ID 

PTM   15 ID 

The HMMs in the experiments were structured left to right with 8 states, 6 emitting 
distributions, and no state skipping, except for the "silence" model, which had 3 states and 1 
emitting distribution. HMMI was decoded with the conventional Viterbi algorithm, and 
HMMII adopted a two-pass search strategy: the first pass was implemented using the forward 
Viterbi algorithm, and the second pass using the backward A* decoding to integrate the 
duration distribution [Deng et al. 2000]. HMMII was modeled using the tri-word model, while 
the other systems were modeled by the whole-word model. SSMI and SSMII were two SSM 
systems. SSMI had Gaussian densities comparable with those of HMMI so that a comparison 
of the performance between SSM and HMM would be meaningful. SSMII, which had more 
region models and mixture components than SSMI, achieved the best performance in the digit 
string recognition task. The baseline PTM was consisted of three sub-segments [Deng et al. 
1994] and the polynomial regression order was 2. 

4.2 Experimental Results 
Table 3 compares the modeling ability of HMM and SSM. It can be seen that SSM achieved 
better performance than HMM. SSMI performed better than not only HMMI but also HMMII. 
When the number of regions and mixture components increased, SSMII achieved 95% string 
accuracy for mandarin digit strings. “S Cor,” “W err,” ” Ins err,” “Del err” and “Sub err” are 
the string correction rate, word error rate, insertion error rate, deletion error rate and the 
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substitution error rate respectively. 

 Table 3. Comparison of digit string recognition performance 
                 achieved with SSM and HMM 

 

 

 

For the purpose of comparison, the number of regions in a sub-region sequence was fixed 
at 20 and the total number of region models was 60 (20× 3) in each fast PTM. The feature 
frames in a segment were mapping to these 60 region models using the time linear resampling. 
The other parameters were the same as those for the baseline PTM system. Table 4 presents 
the recognition results obtained with the fixed PTM and the original PTM. It shows that the 
performance of the PTM system was slightly downgraded following the modifications but still 
acceptable (0.6% string accuracy loss). 

Table 4. Recognition results obtained with PTM and fixed PTM 
Methods S Corr. W err Ins err Del err Sub err 

PTM 95.10% 1.53% 0.30% 0.24% 0.99% 

Fixed PTM 94.50% 1.82% 0.14% 0.68% 1.00% 

The efficiency of the different recognition systems, including the conventional SSM, fast 
SSM, PTM, fixed PTM, and HMM, is compared in Table 5. We used the utterances of one 
person (80 strings) in the test set. As shown in Table 5, the fast algorithm boosted SMs and 
reduced the complexity of SM to the same level of that of HMM. The most noticeable 
achievement was made by the fixed PTM system, which was 90 times faster than the original 
one. 

Table 5. Time comparison of SM, Fast SM, and HMM 
 T (s) 
HMMI 35 
HMMII 87 
Conventional SSMI 1816 
Fast SSMI 101 
Fast SSMII 162 
PTM 23854 
Fixed PTM 271 

 S Corr. W err Ins err Del err Sub err 
HMMI 87.10% 3.88% 0.64% 2.14% 1.10% 
HMMII 91.80% 2.53% 0.19% 0.87% 1.47% 
SSMI 92.52% 2.58% 0.23% 0.72% 1.63% 
SSMII 95.00% 1.64% 0.35% 0.27% 1.02% 
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5. Conclusions 

In this paper, a fast framework has been proposed to boost the speed of CMTSM based on the 
assumption that the region model of SM is independent from the segment duration, so that 
intermediate results are shared during the computation of segment scores. Two examples, 
SSM and PTM, have been used to illustrate this framework. The improved systems are far 
more effective than the original models. Based on this framework, it is potential to implement 
SM to LVCSR [Tang et al. 2005] in current computation condition and this will be our focus 
of future work. 
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